Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200011012> ?p ?o ?g. }
- W4200011012 endingPage "110641" @default.
- W4200011012 startingPage "110641" @default.
- W4200011012 abstract "• A structural crack ImageNet from various civil infrastructures is proposed. • A novel strategy containing both in-domain and cross-domain transfer learning is proposed. • More convolutional layers are unfrozen for fine-tuning to capture feature maps of structural damages. • It can classify and weakly-supervised locate the dam crack areas with high accuracy and recall. Under the continuous cycle of the external and environmental loads, the material property of dam structures will inevitably degrade and various structural defects will occur frequently. Among them, crack is one of the most threatening structural diseases, which has aroused extensive research attention. Identifying these structural cracks with high efficiency and accuracy is of great significance to the reinforcement of dams and maintenance of national infrastructure investment. This paper proposes an automatic classification and weakly-supervised localization paradigm for structural cracks in concrete dams based on deep residual neural networks and transfer learning. Inspired by ImageNet Challenge, this paper firstly proposes a structural crack ImageNet containing cracks collected from various types of civil infrastructures. Considering the difference between structural crack images and natural images, a combined two-stage transfer learing strategy is proposed. Specifically, more convolutional layers of the pre-trained model on the ImageNet are unfrozen and fine-tuned on the proposed structural ImageNet. To improve the model interpretability, Gradient-weighted class activation mapping(Grad-CAM) approach is utilized to classify and weakly-supervised locate the underlying surface cracks on an arch dam without relying on refined manual data annotations. The experimental results demonstrate that the proposed framework can effectively identify structural cracks of concrete dams with high accuracy and recall without relying on refined manual annotations under strong environmental background inference conditions. The proposed framework can be equipped with image acquisition equipment to realize real-time detection and localization of concrete dam structural defects." @default.
- W4200011012 created "2021-12-31" @default.
- W4200011012 creator A5024328368 @default.
- W4200011012 creator A5045803871 @default.
- W4200011012 creator A5059507438 @default.
- W4200011012 creator A5071258270 @default.
- W4200011012 creator A5072113936 @default.
- W4200011012 creator A5075782732 @default.
- W4200011012 creator A5076830444 @default.
- W4200011012 creator A5087363413 @default.
- W4200011012 date "2022-01-01" @default.
- W4200011012 modified "2023-09-23" @default.
- W4200011012 title "A deep residual neural network framework with transfer learning for concrete dams patch-level crack classification and weakly-supervised localization" @default.
- W4200011012 cites W2056568601 @default.
- W4200011012 cites W2091149439 @default.
- W4200011012 cites W2165698076 @default.
- W4200011012 cites W2194775991 @default.
- W4200011012 cites W2511065100 @default.
- W4200011012 cites W2622826443 @default.
- W4200011012 cites W2800346298 @default.
- W4200011012 cites W2808943413 @default.
- W4200011012 cites W2899144041 @default.
- W4200011012 cites W2919816425 @default.
- W4200011012 cites W2942829333 @default.
- W4200011012 cites W2963908722 @default.
- W4200011012 cites W2994406669 @default.
- W4200011012 cites W3002413238 @default.
- W4200011012 cites W3011200270 @default.
- W4200011012 cites W3026226589 @default.
- W4200011012 cites W3028189778 @default.
- W4200011012 cites W3029029935 @default.
- W4200011012 cites W3036404753 @default.
- W4200011012 cites W3040786507 @default.
- W4200011012 cites W3044248863 @default.
- W4200011012 cites W3046066588 @default.
- W4200011012 cites W3084079424 @default.
- W4200011012 cites W3124942917 @default.
- W4200011012 cites W3134108147 @default.
- W4200011012 cites W3134503721 @default.
- W4200011012 cites W3136956361 @default.
- W4200011012 cites W3159055604 @default.
- W4200011012 cites W3198799270 @default.
- W4200011012 doi "https://doi.org/10.1016/j.measurement.2021.110641" @default.
- W4200011012 hasPublicationYear "2022" @default.
- W4200011012 type Work @default.
- W4200011012 citedByCount "15" @default.
- W4200011012 countsByYear W42000110122022 @default.
- W4200011012 countsByYear W42000110122023 @default.
- W4200011012 crossrefType "journal-article" @default.
- W4200011012 hasAuthorship W4200011012A5024328368 @default.
- W4200011012 hasAuthorship W4200011012A5045803871 @default.
- W4200011012 hasAuthorship W4200011012A5059507438 @default.
- W4200011012 hasAuthorship W4200011012A5071258270 @default.
- W4200011012 hasAuthorship W4200011012A5072113936 @default.
- W4200011012 hasAuthorship W4200011012A5075782732 @default.
- W4200011012 hasAuthorship W4200011012A5076830444 @default.
- W4200011012 hasAuthorship W4200011012A5087363413 @default.
- W4200011012 hasConcept C11413529 @default.
- W4200011012 hasConcept C119857082 @default.
- W4200011012 hasConcept C134306372 @default.
- W4200011012 hasConcept C138885662 @default.
- W4200011012 hasConcept C150899416 @default.
- W4200011012 hasConcept C153180895 @default.
- W4200011012 hasConcept C154945302 @default.
- W4200011012 hasConcept C155512373 @default.
- W4200011012 hasConcept C2776401178 @default.
- W4200011012 hasConcept C2781067378 @default.
- W4200011012 hasConcept C33923547 @default.
- W4200011012 hasConcept C36503486 @default.
- W4200011012 hasConcept C41008148 @default.
- W4200011012 hasConcept C41895202 @default.
- W4200011012 hasConcept C50644808 @default.
- W4200011012 hasConcept C81363708 @default.
- W4200011012 hasConceptScore W4200011012C11413529 @default.
- W4200011012 hasConceptScore W4200011012C119857082 @default.
- W4200011012 hasConceptScore W4200011012C134306372 @default.
- W4200011012 hasConceptScore W4200011012C138885662 @default.
- W4200011012 hasConceptScore W4200011012C150899416 @default.
- W4200011012 hasConceptScore W4200011012C153180895 @default.
- W4200011012 hasConceptScore W4200011012C154945302 @default.
- W4200011012 hasConceptScore W4200011012C155512373 @default.
- W4200011012 hasConceptScore W4200011012C2776401178 @default.
- W4200011012 hasConceptScore W4200011012C2781067378 @default.
- W4200011012 hasConceptScore W4200011012C33923547 @default.
- W4200011012 hasConceptScore W4200011012C36503486 @default.
- W4200011012 hasConceptScore W4200011012C41008148 @default.
- W4200011012 hasConceptScore W4200011012C41895202 @default.
- W4200011012 hasConceptScore W4200011012C50644808 @default.
- W4200011012 hasConceptScore W4200011012C81363708 @default.
- W4200011012 hasLocation W42000110121 @default.
- W4200011012 hasOpenAccess W4200011012 @default.
- W4200011012 hasPrimaryLocation W42000110121 @default.
- W4200011012 hasRelatedWork W2738221750 @default.
- W4200011012 hasRelatedWork W2760085659 @default.
- W4200011012 hasRelatedWork W2909857627 @default.
- W4200011012 hasRelatedWork W2973451922 @default.
- W4200011012 hasRelatedWork W3021430260 @default.
- W4200011012 hasRelatedWork W3153891452 @default.