Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200018032> ?p ?o ?g. }
- W4200018032 endingPage "103617" @default.
- W4200018032 startingPage "103617" @default.
- W4200018032 abstract "Predicting cancer survival from molecular data is an important aspect of biomedical research because it allows quantifying patient risks and thus individualizing therapy. We introduce XGBoost tree ensemble learning to predict survival from transcriptome data of 8,024 patients from 25 different cancer types and show highly competitive performance with state-of-the-art methods. To further improve plausibility of the machine learning approach we conducted two additional steps. In the first step, we applied pan-cancer training and showed that it substantially improves prognosis compared with cancer subtype-specific training. In the second step, we applied network propagation and inferred a pan-cancer survival network consisting of 103 genes. This network highlights cross-cohort features and is predictive for the tumor microenvironment and immune status of the patients. Our work demonstrates that pan-cancer learning combined with network propagation generalizes over multiple cancer types and identifies biologically plausible features that can serve as biomarkers for monitoring cancer survival." @default.
- W4200018032 created "2021-12-31" @default.
- W4200018032 creator A5053283140 @default.
- W4200018032 creator A5063647894 @default.
- W4200018032 date "2022-01-01" @default.
- W4200018032 modified "2023-09-26" @default.
- W4200018032 title "A gradient tree boosting and network propagation derived pan-cancer survival network of the tumor microenvironment" @default.
- W4200018032 cites W1540592014 @default.
- W4200018032 cites W1995875735 @default.
- W4200018032 cites W2005334224 @default.
- W4200018032 cites W2010028216 @default.
- W4200018032 cites W2022397091 @default.
- W4200018032 cites W2033278321 @default.
- W4200018032 cites W2071128523 @default.
- W4200018032 cites W2088891952 @default.
- W4200018032 cites W2096766502 @default.
- W4200018032 cites W2100922775 @default.
- W4200018032 cites W2104397341 @default.
- W4200018032 cites W2108933868 @default.
- W4200018032 cites W2111547563 @default.
- W4200018032 cites W2112657305 @default.
- W4200018032 cites W2119387367 @default.
- W4200018032 cites W2143965359 @default.
- W4200018032 cites W2153161557 @default.
- W4200018032 cites W2153607816 @default.
- W4200018032 cites W2162143298 @default.
- W4200018032 cites W2169726583 @default.
- W4200018032 cites W2214074259 @default.
- W4200018032 cites W2275678839 @default.
- W4200018032 cites W2294798173 @default.
- W4200018032 cites W2347037915 @default.
- W4200018032 cites W2409923755 @default.
- W4200018032 cites W2509717357 @default.
- W4200018032 cites W2593816418 @default.
- W4200018032 cites W2606665849 @default.
- W4200018032 cites W2624021832 @default.
- W4200018032 cites W2649656222 @default.
- W4200018032 cites W2753919178 @default.
- W4200018032 cites W2761193356 @default.
- W4200018032 cites W2771978163 @default.
- W4200018032 cites W2781525129 @default.
- W4200018032 cites W2787553551 @default.
- W4200018032 cites W2789900707 @default.
- W4200018032 cites W2794479004 @default.
- W4200018032 cites W2795989238 @default.
- W4200018032 cites W2796153225 @default.
- W4200018032 cites W2796153844 @default.
- W4200018032 cites W2796207838 @default.
- W4200018032 cites W2797883881 @default.
- W4200018032 cites W2805310212 @default.
- W4200018032 cites W2889518024 @default.
- W4200018032 cites W2891700678 @default.
- W4200018032 cites W2910705748 @default.
- W4200018032 cites W2940010972 @default.
- W4200018032 cites W2942173509 @default.
- W4200018032 cites W2948001905 @default.
- W4200018032 cites W2949066452 @default.
- W4200018032 cites W2954499361 @default.
- W4200018032 cites W2963414887 @default.
- W4200018032 cites W2995607278 @default.
- W4200018032 cites W2996638575 @default.
- W4200018032 cites W2999013831 @default.
- W4200018032 cites W3004480399 @default.
- W4200018032 cites W3004898212 @default.
- W4200018032 cites W3006500278 @default.
- W4200018032 cites W3008826523 @default.
- W4200018032 cites W3043242675 @default.
- W4200018032 cites W3046714933 @default.
- W4200018032 cites W3080773873 @default.
- W4200018032 cites W3085213187 @default.
- W4200018032 cites W3087992083 @default.
- W4200018032 cites W3088342122 @default.
- W4200018032 cites W3099478002 @default.
- W4200018032 cites W3115880421 @default.
- W4200018032 cites W3130522707 @default.
- W4200018032 cites W3176016422 @default.
- W4200018032 doi "https://doi.org/10.1016/j.isci.2021.103617" @default.
- W4200018032 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35106465" @default.
- W4200018032 hasPublicationYear "2022" @default.
- W4200018032 type Work @default.
- W4200018032 citedByCount "3" @default.
- W4200018032 countsByYear W42000180322022 @default.
- W4200018032 countsByYear W42000180322023 @default.
- W4200018032 crossrefType "journal-article" @default.
- W4200018032 hasAuthorship W4200018032A5053283140 @default.
- W4200018032 hasAuthorship W4200018032A5063647894 @default.
- W4200018032 hasBestOaLocation W42000180321 @default.
- W4200018032 hasConcept C108583219 @default.
- W4200018032 hasConcept C113174947 @default.
- W4200018032 hasConcept C119857082 @default.
- W4200018032 hasConcept C121608353 @default.
- W4200018032 hasConcept C126322002 @default.
- W4200018032 hasConcept C134306372 @default.
- W4200018032 hasConcept C143998085 @default.
- W4200018032 hasConcept C154945302 @default.
- W4200018032 hasConcept C169258074 @default.
- W4200018032 hasConcept C2776107976 @default.
- W4200018032 hasConcept C33923547 @default.