Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200023968> ?p ?o ?g. }
- W4200023968 endingPage "111794" @default.
- W4200023968 startingPage "111794" @default.
- W4200023968 abstract "A large part of energy consumption in homes, offices and commercial spaces is related to Heating, Ventilation and Air-conditioning (HVAC) devices. The effective parameter on the consumption of HVAC systems is internal heat gains that arise from occupants, electric equipment and lighting. In order to reduce the energy consumption of these systems, internal heat gains should be predicted accurately. Since there are few investigations performed on the prediction of internal heat gains, in this paper, three predictive models, namely multiple regression model, Levenberg–Marquardt back-propagation (LM-BP) model and similar days method based on combined weights, have been deployed. By assessing the influential factors on internal heat gains, fundamental theories, structures, equations and parameters of these models are thoroughly proposed. To examine the prediction techniques, an office building in China was considered. It was found that all the proposed models have high accuracy; however, the LM-BP neural network showed the most precision among other models with RMSE = 15.59, MAE = 10.16 and MAPE = 6.35. This model had a higher agreement with the actual internal heat gains compared to the predetermined working programs in the ASHRAE standard 90.1. The proposed models used in this study can lead to providing a theoretical base for scholars and engineers to improve the predictive control of HVAC systems, which plays an important role in enhancing thermal comfort, saving energy of residential buildings." @default.
- W4200023968 created "2021-12-31" @default.
- W4200023968 creator A5031417521 @default.
- W4200023968 creator A5031704161 @default.
- W4200023968 creator A5048078334 @default.
- W4200023968 creator A5050500493 @default.
- W4200023968 creator A5052145051 @default.
- W4200023968 creator A5084259009 @default.
- W4200023968 date "2022-03-01" @default.
- W4200023968 modified "2023-10-06" @default.
- W4200023968 title "Buildings’ internal heat gains prediction using artificial intelligence methods" @default.
- W4200023968 cites W1972158253 @default.
- W4200023968 cites W1983134526 @default.
- W4200023968 cites W1993275616 @default.
- W4200023968 cites W2013088928 @default.
- W4200023968 cites W2033800161 @default.
- W4200023968 cites W2047404524 @default.
- W4200023968 cites W2051049375 @default.
- W4200023968 cites W2062151674 @default.
- W4200023968 cites W2069164877 @default.
- W4200023968 cites W2086384823 @default.
- W4200023968 cites W2088986457 @default.
- W4200023968 cites W2090859416 @default.
- W4200023968 cites W2102995649 @default.
- W4200023968 cites W2130372754 @default.
- W4200023968 cites W2137569555 @default.
- W4200023968 cites W2151593681 @default.
- W4200023968 cites W2163121678 @default.
- W4200023968 cites W2164709595 @default.
- W4200023968 cites W2236674324 @default.
- W4200023968 cites W2256307270 @default.
- W4200023968 cites W2270850647 @default.
- W4200023968 cites W2333104587 @default.
- W4200023968 cites W2340407392 @default.
- W4200023968 cites W2402910958 @default.
- W4200023968 cites W2404714626 @default.
- W4200023968 cites W2411798846 @default.
- W4200023968 cites W2416676684 @default.
- W4200023968 cites W2433783926 @default.
- W4200023968 cites W2491925643 @default.
- W4200023968 cites W2528545634 @default.
- W4200023968 cites W2560429367 @default.
- W4200023968 cites W2566003805 @default.
- W4200023968 cites W2567876258 @default.
- W4200023968 cites W2571562983 @default.
- W4200023968 cites W2575938264 @default.
- W4200023968 cites W2589738328 @default.
- W4200023968 cites W2703543086 @default.
- W4200023968 cites W2734605807 @default.
- W4200023968 cites W2738725415 @default.
- W4200023968 cites W2751778127 @default.
- W4200023968 cites W2752823342 @default.
- W4200023968 cites W2753070270 @default.
- W4200023968 cites W2789330670 @default.
- W4200023968 cites W2800024193 @default.
- W4200023968 cites W2804334293 @default.
- W4200023968 cites W2811245964 @default.
- W4200023968 cites W2901363875 @default.
- W4200023968 cites W2914473095 @default.
- W4200023968 cites W2914835362 @default.
- W4200023968 cites W2950912898 @default.
- W4200023968 cites W2971359695 @default.
- W4200023968 cites W2994818485 @default.
- W4200023968 cites W2996926624 @default.
- W4200023968 cites W2997373520 @default.
- W4200023968 cites W3000461720 @default.
- W4200023968 cites W3014298284 @default.
- W4200023968 cites W3015758067 @default.
- W4200023968 cites W3016316326 @default.
- W4200023968 cites W3020860606 @default.
- W4200023968 cites W3020966181 @default.
- W4200023968 cites W3030040227 @default.
- W4200023968 cites W3032688431 @default.
- W4200023968 cites W3035846893 @default.
- W4200023968 cites W3037781572 @default.
- W4200023968 cites W3037954174 @default.
- W4200023968 cites W3041824023 @default.
- W4200023968 cites W3045951812 @default.
- W4200023968 cites W3087331925 @default.
- W4200023968 cites W3093197249 @default.
- W4200023968 cites W3120112759 @default.
- W4200023968 cites W3134395635 @default.
- W4200023968 cites W3147865923 @default.
- W4200023968 cites W3154884537 @default.
- W4200023968 cites W3156510896 @default.
- W4200023968 cites W3157252626 @default.
- W4200023968 cites W3176908837 @default.
- W4200023968 cites W3185773203 @default.
- W4200023968 cites W3187755637 @default.
- W4200023968 cites W3195428404 @default.
- W4200023968 cites W3199765528 @default.
- W4200023968 cites W3205952217 @default.
- W4200023968 cites W3206918010 @default.
- W4200023968 cites W3213962103 @default.
- W4200023968 cites W3214325366 @default.
- W4200023968 cites W3217354304 @default.
- W4200023968 cites W4200269197 @default.
- W4200023968 cites W4247437180 @default.