Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200024865> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4200024865 abstract "In order to monitor the performance and related efficiency of a combined cycle power plant (CCPP), in addition to the best utilization of its power output, it is vital to predict its full load electrical power output. In this paper, the full load electrical power output of CCPP was predicted employing practically efficient machine learning algorithms, including linear regression, ridge regression, lasso regression, elastic net regression, random forest regression, and gradient boost regression. The original data came from an actual confidential power plant, which was working on a full load for 6 years, with four major features: ambient temperature, relative humidity, atmospheric pressure, and exhaust vacuum, and one target (electrical power output per hour). Different regression performance measures were used, including R2 (coefficient of determination), MAE (Mean Absolute Error), MSE (Mean Squared Error), RMSE (Root Mean Squared Error), and MAPE (Mean Absolute Percentage Error). Research results revealed that the gradient boost regression model outperformed other models with and without using the dimensionality reduction technique (PCA) with the highest R2 of 0.912 and 0.872, respectively, and had the lowest MAPE of 0.872 % and 1.039 %, respectively. Moreover, prediction performance dropped slightly after using the dimensionality reduction technique almost in all regression algorithms used. The novelty in this work is summarized in predicting electrical power output in a CCPP based on a few features using simpler algorithms than reported deep learning and neural networks algorithms combined. That means a lower cost and less complicated procedure as per each, however, resulting in practically accepted results according to the evaluation metrics used." @default.
- W4200024865 created "2021-12-31" @default.
- W4200024865 creator A5053179005 @default.
- W4200024865 creator A5057832685 @default.
- W4200024865 date "2021-12-24" @default.
- W4200024865 modified "2023-10-16" @default.
- W4200024865 title "Prediction of combined cycle power plant electrical output power using machine learning regression algorithms" @default.
- W4200024865 doi "https://doi.org/10.15587/1729-4061.2021.245663" @default.
- W4200024865 hasPublicationYear "2021" @default.
- W4200024865 type Work @default.
- W4200024865 citedByCount "1" @default.
- W4200024865 countsByYear W42000248652022 @default.
- W4200024865 crossrefType "journal-article" @default.
- W4200024865 hasAuthorship W4200024865A5053179005 @default.
- W4200024865 hasAuthorship W4200024865A5057832685 @default.
- W4200024865 hasBestOaLocation W42000248651 @default.
- W4200024865 hasConcept C105795698 @default.
- W4200024865 hasConcept C11413529 @default.
- W4200024865 hasConcept C119857082 @default.
- W4200024865 hasConcept C121332964 @default.
- W4200024865 hasConcept C139945424 @default.
- W4200024865 hasConcept C150217764 @default.
- W4200024865 hasConcept C152877465 @default.
- W4200024865 hasConcept C154945302 @default.
- W4200024865 hasConcept C163258240 @default.
- W4200024865 hasConcept C169258074 @default.
- W4200024865 hasConcept C203868755 @default.
- W4200024865 hasConcept C33923547 @default.
- W4200024865 hasConcept C41008148 @default.
- W4200024865 hasConcept C48921125 @default.
- W4200024865 hasConcept C62520636 @default.
- W4200024865 hasConcept C77715397 @default.
- W4200024865 hasConcept C83546350 @default.
- W4200024865 hasConceptScore W4200024865C105795698 @default.
- W4200024865 hasConceptScore W4200024865C11413529 @default.
- W4200024865 hasConceptScore W4200024865C119857082 @default.
- W4200024865 hasConceptScore W4200024865C121332964 @default.
- W4200024865 hasConceptScore W4200024865C139945424 @default.
- W4200024865 hasConceptScore W4200024865C150217764 @default.
- W4200024865 hasConceptScore W4200024865C152877465 @default.
- W4200024865 hasConceptScore W4200024865C154945302 @default.
- W4200024865 hasConceptScore W4200024865C163258240 @default.
- W4200024865 hasConceptScore W4200024865C169258074 @default.
- W4200024865 hasConceptScore W4200024865C203868755 @default.
- W4200024865 hasConceptScore W4200024865C33923547 @default.
- W4200024865 hasConceptScore W4200024865C41008148 @default.
- W4200024865 hasConceptScore W4200024865C48921125 @default.
- W4200024865 hasConceptScore W4200024865C62520636 @default.
- W4200024865 hasConceptScore W4200024865C77715397 @default.
- W4200024865 hasConceptScore W4200024865C83546350 @default.
- W4200024865 hasIssue "8 (114)" @default.
- W4200024865 hasLocation W42000248651 @default.
- W4200024865 hasLocation W42000248652 @default.
- W4200024865 hasLocation W42000248653 @default.
- W4200024865 hasOpenAccess W4200024865 @default.
- W4200024865 hasPrimaryLocation W42000248651 @default.
- W4200024865 hasRelatedWork W1987874405 @default.
- W4200024865 hasRelatedWork W2066413987 @default.
- W4200024865 hasRelatedWork W2598237895 @default.
- W4200024865 hasRelatedWork W2917200448 @default.
- W4200024865 hasRelatedWork W2966251753 @default.
- W4200024865 hasRelatedWork W4300642372 @default.
- W4200024865 hasRelatedWork W4307266384 @default.
- W4200024865 hasRelatedWork W4323568033 @default.
- W4200024865 hasRelatedWork W4324137334 @default.
- W4200024865 hasRelatedWork W4377822244 @default.
- W4200024865 hasVolume "6" @default.
- W4200024865 isParatext "false" @default.
- W4200024865 isRetracted "false" @default.
- W4200024865 workType "article" @default.