Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200032296> ?p ?o ?g. }
- W4200032296 endingPage "5018" @default.
- W4200032296 startingPage "5018" @default.
- W4200032296 abstract "The accurate evaluation of shifts in vegetation phenology is essential for understanding of vegetation responses to climate change. Remote-sensing vegetation index (VI) products with multi-day scales have been widely used for phenology trend estimation. VI composites should be interpolated into a daily scale for extracting phenological metrics, which may not fully capture daily vegetation growth, and how this process affects phenology trend estimation remains unclear. In this study, we chose 120 sites over four vegetation types in the mid-high latitudes of the northern hemisphere, and then a Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A4 daily surface reflectance data was used to generate a daily normalized difference vegetation index (NDVI) dataset in addition to an 8-day and a 16-day NDVI composite datasets from 2001 to 2019. Five different time interpolation methods (piecewise logistic function, asymmetric Gaussian function, polynomial curve function, linear interpolation, and spline interpolation) and three phenology extraction methods were applied to extract data from the start of the growing season and the end of the growing season. We compared the trends estimated from daily NDVI data with those from NDVI composites among (1) different interpolation methods; (2) different vegetation types; and (3) different combinations of time interpolation methods and phenology extraction methods. We also analyzed the differences between the trends estimated from the 8-day and 16-day composite datasets. Our results indicated that none of the interpolation methods had significant effects on trend estimation over all sites, but the discrepancies caused by time interpolation could not be ignored. Among vegetation types with apparent seasonal changes such as deciduous broadleaf forest, time interpolation had significant effects on phenology trend estimation but almost had no significant effects among vegetation types with weak seasonal changes such as evergreen needleleaf forests. In addition, trends that were estimated based on the same interpolation method but different extraction methods were not consistent in showing significant (insignificant) differences, implying that the selection of extraction methods also affected trend estimation. Compared with other vegetation types, there were generally fewer discrepancies between trends estimated from the 8-day and 16-day dataset in evergreen needleleaf forest and open shrubland, which indicated that the dataset with a lower temporal resolution (16-day) can be applied. These findings could be conducive for analyzing the uncertainties of monitoring vegetation phenology changes." @default.
- W4200032296 created "2021-12-31" @default.
- W4200032296 creator A5007558771 @default.
- W4200032296 creator A5011911974 @default.
- W4200032296 creator A5014563671 @default.
- W4200032296 creator A5053403248 @default.
- W4200032296 creator A5074205299 @default.
- W4200032296 creator A5081901006 @default.
- W4200032296 creator A5088888341 @default.
- W4200032296 date "2021-12-10" @default.
- W4200032296 modified "2023-09-25" @default.
- W4200032296 title "Assessing the Effects of Time Interpolation of NDVI Composites on Phenology Trend Estimation" @default.
- W4200032296 cites W1910947081 @default.
- W4200032296 cites W1935627862 @default.
- W4200032296 cites W1940816165 @default.
- W4200032296 cites W1965347260 @default.
- W4200032296 cites W1967656737 @default.
- W4200032296 cites W1971548119 @default.
- W4200032296 cites W1974047452 @default.
- W4200032296 cites W1979583257 @default.
- W4200032296 cites W1984378216 @default.
- W4200032296 cites W1985026622 @default.
- W4200032296 cites W1994936507 @default.
- W4200032296 cites W1996463620 @default.
- W4200032296 cites W2007468519 @default.
- W4200032296 cites W2015435324 @default.
- W4200032296 cites W2016948742 @default.
- W4200032296 cites W2018636632 @default.
- W4200032296 cites W2020667732 @default.
- W4200032296 cites W2024649846 @default.
- W4200032296 cites W2027690707 @default.
- W4200032296 cites W2029411945 @default.
- W4200032296 cites W2033329688 @default.
- W4200032296 cites W2034537637 @default.
- W4200032296 cites W2038990264 @default.
- W4200032296 cites W2039794910 @default.
- W4200032296 cites W2040626578 @default.
- W4200032296 cites W2043839818 @default.
- W4200032296 cites W2046849767 @default.
- W4200032296 cites W2051662511 @default.
- W4200032296 cites W2056447651 @default.
- W4200032296 cites W2072093516 @default.
- W4200032296 cites W2072296145 @default.
- W4200032296 cites W2072834400 @default.
- W4200032296 cites W2083702808 @default.
- W4200032296 cites W2099428109 @default.
- W4200032296 cites W2102887902 @default.
- W4200032296 cites W2107258091 @default.
- W4200032296 cites W2109606373 @default.
- W4200032296 cites W2113503197 @default.
- W4200032296 cites W2113640817 @default.
- W4200032296 cites W2115952782 @default.
- W4200032296 cites W2120397678 @default.
- W4200032296 cites W2124564759 @default.
- W4200032296 cites W2126250722 @default.
- W4200032296 cites W2131087881 @default.
- W4200032296 cites W2131311436 @default.
- W4200032296 cites W2137593756 @default.
- W4200032296 cites W2139429070 @default.
- W4200032296 cites W2140844338 @default.
- W4200032296 cites W2151011640 @default.
- W4200032296 cites W2151978020 @default.
- W4200032296 cites W2162371906 @default.
- W4200032296 cites W2167089131 @default.
- W4200032296 cites W2329704833 @default.
- W4200032296 cites W2336987848 @default.
- W4200032296 cites W2521185559 @default.
- W4200032296 cites W2565215602 @default.
- W4200032296 cites W2603020828 @default.
- W4200032296 cites W2609546815 @default.
- W4200032296 cites W2625082276 @default.
- W4200032296 cites W2754959007 @default.
- W4200032296 cites W2801001756 @default.
- W4200032296 cites W2811092260 @default.
- W4200032296 cites W2844909617 @default.
- W4200032296 cites W2916619256 @default.
- W4200032296 cites W2946548295 @default.
- W4200032296 cites W3008377856 @default.
- W4200032296 cites W3092820871 @default.
- W4200032296 cites W3093945933 @default.
- W4200032296 cites W3109397720 @default.
- W4200032296 cites W3173362546 @default.
- W4200032296 cites W3193406951 @default.
- W4200032296 cites W3194084071 @default.
- W4200032296 cites W3194307812 @default.
- W4200032296 cites W3195542824 @default.
- W4200032296 cites W3199376703 @default.
- W4200032296 doi "https://doi.org/10.3390/rs13245018" @default.
- W4200032296 hasPublicationYear "2021" @default.
- W4200032296 type Work @default.
- W4200032296 citedByCount "3" @default.
- W4200032296 countsByYear W42000322962022 @default.
- W4200032296 countsByYear W42000322962023 @default.
- W4200032296 crossrefType "journal-article" @default.
- W4200032296 hasAuthorship W4200032296A5007558771 @default.
- W4200032296 hasAuthorship W4200032296A5011911974 @default.
- W4200032296 hasAuthorship W4200032296A5014563671 @default.
- W4200032296 hasAuthorship W4200032296A5053403248 @default.