Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200074061> ?p ?o ?g. }
- W4200074061 endingPage "125876" @default.
- W4200074061 startingPage "125876" @default.
- W4200074061 abstract "To decrease the environmental and climatic effects of rising concrete consumption, more environmentally friendly concretes are required. One approach to achieve this goal is using natural pozzolans (NP) in concrete mixtures. Natural zeolite (NZ) as a highly reactive NP can improve concrete's durability and mechanical properties. However, tests to estimate concrete strength may take a long time and be costly. Therefore, using computational intelligence techniques, particularly artificial neural networks (ANNs), can help speed up and simplify the process. Hence, this study aims to explore the potential of employing an ANN model to predict compressive strength (CS) and electrical resistivity (ER) of natural zeolitic concrete (NZC). The experimental results of 324 NZC specimens made from 54 different mix designs are used to develop the ANN model. Seven variable inputs are considered when designing the ANN model to predict CS and ER values, including specimen age, water-to-cementitious materials ratio, cement, NZ, gravel, sand, and superplasticiser contents. Extensive computational tests were conducted to evaluate the performance of the proposed model against results obtained by experimental tests and existing gene expression programming (GEP) in the literature. The RMSE values for CS and ER are 1.65 MPa and 3.96 Ω-m, respectively, which confirm the model's accuracy and robust predictive capability. The study's findings have the potential to assist in cutting costs and saving time by using a reliable prediction technique rather than conducting costly and time-consuming tests." @default.
- W4200074061 created "2021-12-31" @default.
- W4200074061 creator A5006539485 @default.
- W4200074061 creator A5029253735 @default.
- W4200074061 creator A5044199084 @default.
- W4200074061 creator A5052854982 @default.
- W4200074061 creator A5053005166 @default.
- W4200074061 date "2022-01-01" @default.
- W4200074061 modified "2023-10-11" @default.
- W4200074061 title "The prediction analysis of compressive strength and electrical resistivity of environmentally friendly concrete incorporating natural zeolite using artificial neural network" @default.
- W4200074061 cites W1873973751 @default.
- W4200074061 cites W1989785932 @default.
- W4200074061 cites W1991801284 @default.
- W4200074061 cites W1992709064 @default.
- W4200074061 cites W1995692472 @default.
- W4200074061 cites W1998670805 @default.
- W4200074061 cites W2000065808 @default.
- W4200074061 cites W2000603649 @default.
- W4200074061 cites W2004439620 @default.
- W4200074061 cites W2005864972 @default.
- W4200074061 cites W2008315643 @default.
- W4200074061 cites W2009218392 @default.
- W4200074061 cites W2017389103 @default.
- W4200074061 cites W2020705526 @default.
- W4200074061 cites W2031560551 @default.
- W4200074061 cites W2032013156 @default.
- W4200074061 cites W2032896126 @default.
- W4200074061 cites W2034514855 @default.
- W4200074061 cites W2038716427 @default.
- W4200074061 cites W2039541674 @default.
- W4200074061 cites W2040179532 @default.
- W4200074061 cites W2049761761 @default.
- W4200074061 cites W2061438946 @default.
- W4200074061 cites W2080099047 @default.
- W4200074061 cites W2089662805 @default.
- W4200074061 cites W2091087666 @default.
- W4200074061 cites W2101096957 @default.
- W4200074061 cites W2104363475 @default.
- W4200074061 cites W2115417239 @default.
- W4200074061 cites W2145085734 @default.
- W4200074061 cites W2165436940 @default.
- W4200074061 cites W2206621768 @default.
- W4200074061 cites W2290883490 @default.
- W4200074061 cites W2321278764 @default.
- W4200074061 cites W2328864735 @default.
- W4200074061 cites W2331258382 @default.
- W4200074061 cites W2394528326 @default.
- W4200074061 cites W2552226573 @default.
- W4200074061 cites W2619925244 @default.
- W4200074061 cites W2621224355 @default.
- W4200074061 cites W2653071745 @default.
- W4200074061 cites W2657676663 @default.
- W4200074061 cites W2782380842 @default.
- W4200074061 cites W2783837416 @default.
- W4200074061 cites W2905488573 @default.
- W4200074061 cites W2921248869 @default.
- W4200074061 cites W2921975164 @default.
- W4200074061 cites W2973198867 @default.
- W4200074061 cites W2976039593 @default.
- W4200074061 cites W2990002755 @default.
- W4200074061 cites W3009520784 @default.
- W4200074061 cites W3012153396 @default.
- W4200074061 cites W3035708455 @default.
- W4200074061 cites W3045801920 @default.
- W4200074061 cites W3080952128 @default.
- W4200074061 cites W3087331925 @default.
- W4200074061 cites W3091212712 @default.
- W4200074061 cites W3094015353 @default.
- W4200074061 cites W3096786988 @default.
- W4200074061 cites W3118499340 @default.
- W4200074061 cites W3121333554 @default.
- W4200074061 cites W3125096732 @default.
- W4200074061 cites W3126180536 @default.
- W4200074061 cites W3131636996 @default.
- W4200074061 cites W3144718223 @default.
- W4200074061 cites W3157851344 @default.
- W4200074061 cites W3167117671 @default.
- W4200074061 cites W3177138162 @default.
- W4200074061 cites W3189389021 @default.
- W4200074061 cites W3189784281 @default.
- W4200074061 cites W3192537868 @default.
- W4200074061 cites W3195352705 @default.
- W4200074061 cites W3199750402 @default.
- W4200074061 cites W4205686602 @default.
- W4200074061 cites W4300533453 @default.
- W4200074061 doi "https://doi.org/10.1016/j.conbuildmat.2021.125876" @default.
- W4200074061 hasPublicationYear "2022" @default.
- W4200074061 type Work @default.
- W4200074061 citedByCount "30" @default.
- W4200074061 countsByYear W42000740612022 @default.
- W4200074061 countsByYear W42000740612023 @default.
- W4200074061 crossrefType "journal-article" @default.
- W4200074061 hasAuthorship W4200074061A5006539485 @default.
- W4200074061 hasAuthorship W4200074061A5029253735 @default.
- W4200074061 hasAuthorship W4200074061A5044199084 @default.
- W4200074061 hasAuthorship W4200074061A5052854982 @default.
- W4200074061 hasAuthorship W4200074061A5053005166 @default.
- W4200074061 hasConcept C104304963 @default.