Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200081114> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4200081114 abstract "Predictive modelling in cybersecurity domains usually involves dealing with complex settings. The class imbalance problem is a well-know challenge typically present in the cybersecurity domain. For instance, in a real-world intrusion detection scenario, the number of attacks is expected to be a a very small percentage of the normal cases. Moreover, in these applications, the number of available examples labelled is also small due to the complexity and cost of the labelling process: teams of domain experts need to be involved in the process which becomes expensive, time consuming and prone to errors. To address these problems is critical to the success of predictive modelling in cybersecurity applications. In this paper we tackle the class imbalance and small sample size through the use of a CGAN-based up-sampling procedure. We carry out an extensive set of experiments that show the positive impact of applying this solution to address the class imbalance and small sample size problems. A large data repository is built and freely provided to the research community containing 114 binary datasets based on real-world cybersecurity problems that are generated with diversified levels of imbalance and sample size. Our experiments show a clear advantage of using the CGAN-based up-sampling method specially for situations where the sample size is small and there is a large imbalance between the problem classes. In the most critical scenarios associated with extreme rarity and very small sample size, an impressive performance boost is achieved. We also explore the behaviour of this approach when the presence of these problems is less marked and we found that, while CGAN-based up-sampling is not able to further improve the minority class performance, it also has no negative impact. Thus, it is a safe to use solution, also in these scenarios." @default.
- W4200081114 created "2021-12-31" @default.
- W4200081114 creator A5007509079 @default.
- W4200081114 creator A5032589784 @default.
- W4200081114 creator A5043554078 @default.
- W4200081114 date "2021-12-13" @default.
- W4200081114 modified "2023-09-26" @default.
- W4200081114 title "Using CGAN to Deal with Class Imbalance and Small Sample Size in Cybersecurity Problems" @default.
- W4200081114 cites W2132791018 @default.
- W4200081114 cites W2148143831 @default.
- W4200081114 cites W2490420619 @default.
- W4200081114 cites W2521519773 @default.
- W4200081114 cites W2591712613 @default.
- W4200081114 cites W2779931100 @default.
- W4200081114 cites W2793232926 @default.
- W4200081114 cites W2806276686 @default.
- W4200081114 cites W2909934716 @default.
- W4200081114 cites W2918780409 @default.
- W4200081114 cites W2919491917 @default.
- W4200081114 cites W2921353139 @default.
- W4200081114 cites W2934018981 @default.
- W4200081114 cites W2949924060 @default.
- W4200081114 cites W2951526967 @default.
- W4200081114 cites W2962770929 @default.
- W4200081114 cites W2963278610 @default.
- W4200081114 cites W2964268978 @default.
- W4200081114 cites W3006938707 @default.
- W4200081114 cites W3091820582 @default.
- W4200081114 cites W3105087971 @default.
- W4200081114 cites W3105429705 @default.
- W4200081114 cites W3120644841 @default.
- W4200081114 cites W3128484727 @default.
- W4200081114 cites W2874542333 @default.
- W4200081114 doi "https://doi.org/10.1109/pst52912.2021.9647807" @default.
- W4200081114 hasPublicationYear "2021" @default.
- W4200081114 type Work @default.
- W4200081114 citedByCount "4" @default.
- W4200081114 countsByYear W42000811142022 @default.
- W4200081114 countsByYear W42000811142023 @default.
- W4200081114 crossrefType "proceedings-article" @default.
- W4200081114 hasAuthorship W4200081114A5007509079 @default.
- W4200081114 hasAuthorship W4200081114A5032589784 @default.
- W4200081114 hasAuthorship W4200081114A5043554078 @default.
- W4200081114 hasConcept C105795698 @default.
- W4200081114 hasConcept C111919701 @default.
- W4200081114 hasConcept C119857082 @default.
- W4200081114 hasConcept C124101348 @default.
- W4200081114 hasConcept C129848803 @default.
- W4200081114 hasConcept C134306372 @default.
- W4200081114 hasConcept C154945302 @default.
- W4200081114 hasConcept C177264268 @default.
- W4200081114 hasConcept C185592680 @default.
- W4200081114 hasConcept C198531522 @default.
- W4200081114 hasConcept C199360897 @default.
- W4200081114 hasConcept C2777212361 @default.
- W4200081114 hasConcept C33923547 @default.
- W4200081114 hasConcept C35525427 @default.
- W4200081114 hasConcept C36503486 @default.
- W4200081114 hasConcept C38652104 @default.
- W4200081114 hasConcept C41008148 @default.
- W4200081114 hasConcept C43617362 @default.
- W4200081114 hasConcept C98045186 @default.
- W4200081114 hasConceptScore W4200081114C105795698 @default.
- W4200081114 hasConceptScore W4200081114C111919701 @default.
- W4200081114 hasConceptScore W4200081114C119857082 @default.
- W4200081114 hasConceptScore W4200081114C124101348 @default.
- W4200081114 hasConceptScore W4200081114C129848803 @default.
- W4200081114 hasConceptScore W4200081114C134306372 @default.
- W4200081114 hasConceptScore W4200081114C154945302 @default.
- W4200081114 hasConceptScore W4200081114C177264268 @default.
- W4200081114 hasConceptScore W4200081114C185592680 @default.
- W4200081114 hasConceptScore W4200081114C198531522 @default.
- W4200081114 hasConceptScore W4200081114C199360897 @default.
- W4200081114 hasConceptScore W4200081114C2777212361 @default.
- W4200081114 hasConceptScore W4200081114C33923547 @default.
- W4200081114 hasConceptScore W4200081114C35525427 @default.
- W4200081114 hasConceptScore W4200081114C36503486 @default.
- W4200081114 hasConceptScore W4200081114C38652104 @default.
- W4200081114 hasConceptScore W4200081114C41008148 @default.
- W4200081114 hasConceptScore W4200081114C43617362 @default.
- W4200081114 hasConceptScore W4200081114C98045186 @default.
- W4200081114 hasFunder F4320334593 @default.
- W4200081114 hasLocation W42000811141 @default.
- W4200081114 hasOpenAccess W4200081114 @default.
- W4200081114 hasPrimaryLocation W42000811141 @default.
- W4200081114 hasRelatedWork W1537992138 @default.
- W4200081114 hasRelatedWork W1543345676 @default.
- W4200081114 hasRelatedWork W2107854016 @default.
- W4200081114 hasRelatedWork W2351252967 @default.
- W4200081114 hasRelatedWork W2366221835 @default.
- W4200081114 hasRelatedWork W2371474181 @default.
- W4200081114 hasRelatedWork W2374211671 @default.
- W4200081114 hasRelatedWork W2382213052 @default.
- W4200081114 hasRelatedWork W2388271354 @default.
- W4200081114 hasRelatedWork W3043172660 @default.
- W4200081114 isParatext "false" @default.
- W4200081114 isRetracted "false" @default.
- W4200081114 workType "article" @default.