Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200081342> ?p ?o ?g. }
- W4200081342 endingPage "120791" @default.
- W4200081342 startingPage "120791" @default.
- W4200081342 abstract "The rapid and non-destructive detection of moisture in withering leaves is an unsolved problem because the leaves are stacked together and have random orientation. To address this issue, this study aimed to establish more robust and accurate models. The performance of front side, back side and multi-region models were compared, and the front side model showed the worst transferability. Therefore, five effective wavelength (EW) selection algorithms were combined with a successive projection algorithm (SPA) to select EWs. It was found that the shuffled frog leaping algorithm (SFLA) combined with SPA was the best method for the front side model for moisture analyses. Based on the selected EWs, the extreme learning machine (ELM) became the model with the best self-verification result. Subsequently, moisture distribution maps of withering leaves were successfully generated. Considering the processing demand of withering leaves, local region models developed based on partial least squares and the SFLA-SPA method were applied to predict the moisture of withering leaves in the local and stacked region. The results showed that the RPD, Rcv and Rp values were above 1.6, 0.870 and 0.897, respectively. These results provide a useful reference for the non-destructive detection of moisture in withering leaves." @default.
- W4200081342 created "2021-12-31" @default.
- W4200081342 creator A5000865731 @default.
- W4200081342 creator A5002508573 @default.
- W4200081342 creator A5007747297 @default.
- W4200081342 creator A5032676228 @default.
- W4200081342 creator A5044614169 @default.
- W4200081342 creator A5045547356 @default.
- W4200081342 creator A5073577595 @default.
- W4200081342 creator A5082125161 @default.
- W4200081342 date "2022-03-01" @default.
- W4200081342 modified "2023-10-16" @default.
- W4200081342 title "Robustness and accuracy evaluation of moisture prediction model for black tea withering process using hyperspectral imaging" @default.
- W4200081342 cites W1238908634 @default.
- W4200081342 cites W1963616278 @default.
- W4200081342 cites W1969487206 @default.
- W4200081342 cites W1972840337 @default.
- W4200081342 cites W1996195892 @default.
- W4200081342 cites W1997270149 @default.
- W4200081342 cites W1998053851 @default.
- W4200081342 cites W2005996521 @default.
- W4200081342 cites W2013945303 @default.
- W4200081342 cites W2037731394 @default.
- W4200081342 cites W2041859801 @default.
- W4200081342 cites W2054400753 @default.
- W4200081342 cites W2057607448 @default.
- W4200081342 cites W2066536516 @default.
- W4200081342 cites W2081373740 @default.
- W4200081342 cites W2094213917 @default.
- W4200081342 cites W2107451907 @default.
- W4200081342 cites W2121971770 @default.
- W4200081342 cites W2131248453 @default.
- W4200081342 cites W2148158088 @default.
- W4200081342 cites W2158863190 @default.
- W4200081342 cites W2159961845 @default.
- W4200081342 cites W2221245829 @default.
- W4200081342 cites W2584521802 @default.
- W4200081342 cites W2597974898 @default.
- W4200081342 cites W2764101711 @default.
- W4200081342 cites W2769570028 @default.
- W4200081342 cites W2801012621 @default.
- W4200081342 cites W2807555618 @default.
- W4200081342 cites W2883166799 @default.
- W4200081342 cites W2907164533 @default.
- W4200081342 cites W2928386952 @default.
- W4200081342 cites W3012931284 @default.
- W4200081342 cites W3028231515 @default.
- W4200081342 cites W3088127625 @default.
- W4200081342 cites W3093009805 @default.
- W4200081342 cites W3110894444 @default.
- W4200081342 cites W3176729545 @default.
- W4200081342 doi "https://doi.org/10.1016/j.saa.2021.120791" @default.
- W4200081342 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34968835" @default.
- W4200081342 hasPublicationYear "2022" @default.
- W4200081342 type Work @default.
- W4200081342 citedByCount "11" @default.
- W4200081342 countsByYear W42000813422022 @default.
- W4200081342 countsByYear W42000813422023 @default.
- W4200081342 crossrefType "journal-article" @default.
- W4200081342 hasAuthorship W4200081342A5000865731 @default.
- W4200081342 hasAuthorship W4200081342A5002508573 @default.
- W4200081342 hasAuthorship W4200081342A5007747297 @default.
- W4200081342 hasAuthorship W4200081342A5032676228 @default.
- W4200081342 hasAuthorship W4200081342A5044614169 @default.
- W4200081342 hasAuthorship W4200081342A5045547356 @default.
- W4200081342 hasAuthorship W4200081342A5073577595 @default.
- W4200081342 hasAuthorship W4200081342A5082125161 @default.
- W4200081342 hasConcept C104317684 @default.
- W4200081342 hasConcept C11413529 @default.
- W4200081342 hasConcept C119857082 @default.
- W4200081342 hasConcept C140331021 @default.
- W4200081342 hasConcept C153294291 @default.
- W4200081342 hasConcept C154945302 @default.
- W4200081342 hasConcept C159078339 @default.
- W4200081342 hasConcept C176864760 @default.
- W4200081342 hasConcept C185592680 @default.
- W4200081342 hasConcept C205649164 @default.
- W4200081342 hasConcept C33923547 @default.
- W4200081342 hasConcept C39432304 @default.
- W4200081342 hasConcept C41008148 @default.
- W4200081342 hasConcept C55493867 @default.
- W4200081342 hasConcept C61272859 @default.
- W4200081342 hasConcept C62649853 @default.
- W4200081342 hasConcept C63479239 @default.
- W4200081342 hasConcept C81917197 @default.
- W4200081342 hasConceptScore W4200081342C104317684 @default.
- W4200081342 hasConceptScore W4200081342C11413529 @default.
- W4200081342 hasConceptScore W4200081342C119857082 @default.
- W4200081342 hasConceptScore W4200081342C140331021 @default.
- W4200081342 hasConceptScore W4200081342C153294291 @default.
- W4200081342 hasConceptScore W4200081342C154945302 @default.
- W4200081342 hasConceptScore W4200081342C159078339 @default.
- W4200081342 hasConceptScore W4200081342C176864760 @default.
- W4200081342 hasConceptScore W4200081342C185592680 @default.
- W4200081342 hasConceptScore W4200081342C205649164 @default.
- W4200081342 hasConceptScore W4200081342C33923547 @default.
- W4200081342 hasConceptScore W4200081342C39432304 @default.
- W4200081342 hasConceptScore W4200081342C41008148 @default.