Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200100974> ?p ?o ?g. }
- W4200100974 endingPage "310" @default.
- W4200100974 startingPage "293" @default.
- W4200100974 abstract "Soil organic C (SOC) plays an important role in soil quality. Thus, it is of great significance to know the spatial distribution characteristics of SOC. Environmental variables, such as natural predictors, remote sensing (RS) variables, and digital soil mapping approaches have been widely used in SOC prediction. However, it is still challenging to determine which methods and variables are effective to map SOC in farmland. In this study, we compare the performance of three machine learning models, including random forest, Cubist, and the support vector machine model for the prediction of SOC contents using RS variables, topographic variables, climate variables, soil property variables, and spatial position variables as environmental covariates. The recursive feature elimination (RFE) technique was used to select optimal variables. Of the 130 sampling sites of the cultivated layer that were collected in Shanggao county, 70% of the data were used for training and 30% for validation. Prediction accuracy and uncertainty was quantified using the bootstrap approach with 100 iterations. The performance of the model was verified by the mean absolute error, RMSE, R2, and Lin's concordance correlation coefficient (CCC); the SD was used as a measure of prediction uncertainty. Results showed that the Cubist model combined with the RFE method (Cubist_RFE) had a mean R2, RMSE, and SD of .84, 2.39 g kg–1, and 0.73 g kg–1, respectively, which showed the highest prediction accuracy and the lowest uncertainty. The soil property variables (soil alkaline hydrolysis N and pH) and RS variables (soil adjusted vegetation index, enhanced vegetation index, and band7 of Sentinel-2) were the controlling factors of SOC prediction. Thus, the results indicate the potential of the Cubist model in SOC prediction, and the combination of the optical and radar RS data is a viable way for predicting SOC." @default.
- W4200100974 created "2021-12-31" @default.
- W4200100974 creator A5019129773 @default.
- W4200100974 creator A5061820936 @default.
- W4200100974 creator A5064842058 @default.
- W4200100974 creator A5079534649 @default.
- W4200100974 date "2022-02-21" @default.
- W4200100974 modified "2023-09-27" @default.
- W4200100974 title "Mapping of soil organic carbon using machine learning models: Combination of optical and radar remote sensing data" @default.
- W4200100974 cites W1058055990 @default.
- W4200100974 cites W128729803 @default.
- W4200100974 cites W1471436312 @default.
- W4200100974 cites W1831050183 @default.
- W4200100974 cites W1964217023 @default.
- W4200100974 cites W1969453331 @default.
- W4200100974 cites W1971296091 @default.
- W4200100974 cites W1971824428 @default.
- W4200100974 cites W1975288608 @default.
- W4200100974 cites W1978617972 @default.
- W4200100974 cites W1978708516 @default.
- W4200100974 cites W1979539465 @default.
- W4200100974 cites W1984670836 @default.
- W4200100974 cites W1986938560 @default.
- W4200100974 cites W1989491987 @default.
- W4200100974 cites W1992884211 @default.
- W4200100974 cites W1993072786 @default.
- W4200100974 cites W1993269563 @default.
- W4200100974 cites W1996406961 @default.
- W4200100974 cites W2012686349 @default.
- W4200100974 cites W2024141630 @default.
- W4200100974 cites W2029429198 @default.
- W4200100974 cites W2033275656 @default.
- W4200100974 cites W2033404926 @default.
- W4200100974 cites W2054325787 @default.
- W4200100974 cites W2058191772 @default.
- W4200100974 cites W2063623478 @default.
- W4200100974 cites W2068431757 @default.
- W4200100974 cites W2074144001 @default.
- W4200100974 cites W2076196252 @default.
- W4200100974 cites W2079770016 @default.
- W4200100974 cites W2081340599 @default.
- W4200100974 cites W2089441588 @default.
- W4200100974 cites W2089953116 @default.
- W4200100974 cites W2103133249 @default.
- W4200100974 cites W2126253859 @default.
- W4200100974 cites W2126699720 @default.
- W4200100974 cites W2128199995 @default.
- W4200100974 cites W2143426320 @default.
- W4200100974 cites W2144189317 @default.
- W4200100974 cites W2146738048 @default.
- W4200100974 cites W2160434086 @default.
- W4200100974 cites W2164695205 @default.
- W4200100974 cites W2169281690 @default.
- W4200100974 cites W2193114191 @default.
- W4200100974 cites W2224936358 @default.
- W4200100974 cites W2230919635 @default.
- W4200100974 cites W2245710736 @default.
- W4200100974 cites W2255534387 @default.
- W4200100974 cites W2308925226 @default.
- W4200100974 cites W2313339984 @default.
- W4200100974 cites W2322799392 @default.
- W4200100974 cites W2332981326 @default.
- W4200100974 cites W2489352211 @default.
- W4200100974 cites W2499020306 @default.
- W4200100974 cites W2518937053 @default.
- W4200100974 cites W2549626365 @default.
- W4200100974 cites W2564835738 @default.
- W4200100974 cites W2589872536 @default.
- W4200100974 cites W2594188781 @default.
- W4200100974 cites W2599078327 @default.
- W4200100974 cites W2625696751 @default.
- W4200100974 cites W2738513598 @default.
- W4200100974 cites W2745131289 @default.
- W4200100974 cites W2747196278 @default.
- W4200100974 cites W2756443134 @default.
- W4200100974 cites W2769747912 @default.
- W4200100974 cites W2792422161 @default.
- W4200100974 cites W2793945963 @default.
- W4200100974 cites W2800193433 @default.
- W4200100974 cites W2885745521 @default.
- W4200100974 cites W2889759488 @default.
- W4200100974 cites W2893301845 @default.
- W4200100974 cites W2893324711 @default.
- W4200100974 cites W2896466647 @default.
- W4200100974 cites W2899637392 @default.
- W4200100974 cites W2905192710 @default.
- W4200100974 cites W2909736607 @default.
- W4200100974 cites W2910053993 @default.
- W4200100974 cites W2911964244 @default.
- W4200100974 cites W2914965248 @default.
- W4200100974 cites W2915098590 @default.
- W4200100974 cites W2919037238 @default.
- W4200100974 cites W2920825860 @default.
- W4200100974 cites W2920930972 @default.
- W4200100974 cites W2921939037 @default.
- W4200100974 cites W2953121833 @default.
- W4200100974 cites W2953707985 @default.
- W4200100974 cites W2962251418 @default.