Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200100982> ?p ?o ?g. }
- W4200100982 abstract "<sec> <title>UNSTRUCTURED</title> Pain is a subjective phenomenon caused/perceived centrally and modified by physical, physiological, or social influences. Currently, the most commonly used approaches for pain measurement rely on self-reporting of pain level on a discrete rating scale. This provides a subjective and only semi-quantitative indicator of pain. This paper presents an approach that combines self-reported pain with pain-related biomarkers to be obtained from biosensors (in development) and possibly other sources of evidence to provide more dependable estimates of experienced pain, a clinical decision support system. We illustrate the approach using a Bayes network, but also describe other artificial intelligence (AI) methods that provide other ways to combine evidence. We also propose an optimization approach for tuning the AI method parameters (opaque to clinicians) so as to best approximate the kinds of outputs most useful to medical practitioners. We present some data from a sample of 379 patients that illustrate several evidence patterns we may expect in real healthcare situations. The majority (79.7%) of our patients show consistent evidence suggesting this biomarker approach may be reasonable. We also found five patterns of inconsistent evidence. These suggest a direction for further exploration. Finally, we sketch out an approach for collecting medical experts’ guidance as to the way the combined evidence might be presented so as to provide the most useful guidance (also needed for any optimization approach). We recognize that one possible outcome may be that all this approach may be able to provide is a quantified measure of the extent to which the evidence is consistent or not, leaving the final decision to the clinicians (where it must reside). Pointers to additional sources of evidence might also be possible in some situations. </sec>" @default.
- W4200100982 created "2021-12-31" @default.
- W4200100982 creator A5034419498 @default.
- W4200100982 date "2021-12-14" @default.
- W4200100982 modified "2023-09-25" @default.
- W4200100982 title "A Bayesian Network Concept for Pain Assessment (Preprint)" @default.
- W4200100982 cites W1482458494 @default.
- W4200100982 cites W1965732799 @default.
- W4200100982 cites W1988483623 @default.
- W4200100982 cites W1991679458 @default.
- W4200100982 cites W1991766265 @default.
- W4200100982 cites W1994241243 @default.
- W4200100982 cites W1998625321 @default.
- W4200100982 cites W2000983136 @default.
- W4200100982 cites W2007305203 @default.
- W4200100982 cites W2008472628 @default.
- W4200100982 cites W2010404222 @default.
- W4200100982 cites W2016319122 @default.
- W4200100982 cites W2016339318 @default.
- W4200100982 cites W2019275635 @default.
- W4200100982 cites W2024918569 @default.
- W4200100982 cites W2028562489 @default.
- W4200100982 cites W2030967847 @default.
- W4200100982 cites W2032445137 @default.
- W4200100982 cites W2032518686 @default.
- W4200100982 cites W2037182281 @default.
- W4200100982 cites W2039453997 @default.
- W4200100982 cites W2041997771 @default.
- W4200100982 cites W2045711873 @default.
- W4200100982 cites W2046158859 @default.
- W4200100982 cites W2048200678 @default.
- W4200100982 cites W2049433363 @default.
- W4200100982 cites W2051061580 @default.
- W4200100982 cites W2052769369 @default.
- W4200100982 cites W2064546820 @default.
- W4200100982 cites W2064615698 @default.
- W4200100982 cites W2066395665 @default.
- W4200100982 cites W2071188949 @default.
- W4200100982 cites W2086978949 @default.
- W4200100982 cites W2090589214 @default.
- W4200100982 cites W2120864426 @default.
- W4200100982 cites W2123258170 @default.
- W4200100982 cites W2125471714 @default.
- W4200100982 cites W2125799629 @default.
- W4200100982 cites W2133877521 @default.
- W4200100982 cites W2149386555 @default.
- W4200100982 cites W2164971547 @default.
- W4200100982 cites W2167639613 @default.
- W4200100982 cites W2331178818 @default.
- W4200100982 cites W2336198785 @default.
- W4200100982 cites W248311410 @default.
- W4200100982 cites W2573967569 @default.
- W4200100982 cites W2583251805 @default.
- W4200100982 cites W2736808963 @default.
- W4200100982 cites W2786875112 @default.
- W4200100982 cites W2802670992 @default.
- W4200100982 cites W2806670438 @default.
- W4200100982 cites W2914427953 @default.
- W4200100982 cites W2943491685 @default.
- W4200100982 cites W2946461872 @default.
- W4200100982 cites W2967998970 @default.
- W4200100982 cites W2991543914 @default.
- W4200100982 cites W3010403032 @default.
- W4200100982 cites W3024947739 @default.
- W4200100982 cites W3033194903 @default.
- W4200100982 cites W3035623431 @default.
- W4200100982 cites W3088779272 @default.
- W4200100982 cites W3099682961 @default.
- W4200100982 cites W3164829239 @default.
- W4200100982 cites W4230588984 @default.
- W4200100982 cites W4232563973 @default.
- W4200100982 cites W4241926831 @default.
- W4200100982 cites W91108901 @default.
- W4200100982 doi "https://doi.org/10.2196/preprints.35711" @default.
- W4200100982 hasPublicationYear "2021" @default.
- W4200100982 type Work @default.
- W4200100982 citedByCount "0" @default.
- W4200100982 crossrefType "posted-content" @default.
- W4200100982 hasAuthorship W4200100982A5034419498 @default.
- W4200100982 hasConcept C107673813 @default.
- W4200100982 hasConcept C11413529 @default.
- W4200100982 hasConcept C119857082 @default.
- W4200100982 hasConcept C121332964 @default.
- W4200100982 hasConcept C124101348 @default.
- W4200100982 hasConcept C136764020 @default.
- W4200100982 hasConcept C154945302 @default.
- W4200100982 hasConcept C15744967 @default.
- W4200100982 hasConcept C160735492 @default.
- W4200100982 hasConcept C162324750 @default.
- W4200100982 hasConcept C185592680 @default.
- W4200100982 hasConcept C198531522 @default.
- W4200100982 hasConcept C207201462 @default.
- W4200100982 hasConcept C2522767166 @default.
- W4200100982 hasConcept C2778755073 @default.
- W4200100982 hasConcept C2779231336 @default.
- W4200100982 hasConcept C33724603 @default.
- W4200100982 hasConcept C41008148 @default.
- W4200100982 hasConcept C43169469 @default.
- W4200100982 hasConcept C43617362 @default.
- W4200100982 hasConcept C50522688 @default.