Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200102447> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4200102447 endingPage "108909" @default.
- W4200102447 startingPage "108909" @default.
- W4200102447 abstract "Crack faults in rotating machines can cause machine shutdown or scrapping, endangering the normal operation and safety of nuclear power plants. Intelligent diagnostic techniques based on machine learning have the potential to diagnose crack faults. However, problems such as scarcity of field fault data and high noise of plant measurements pose challenges to the application of machine learning. This study proposes an ensemble learning approach to mitigate the negative impacts of the problems. Ensemble learning is a strategy for combining multiple machine learning models into a composite model. The basic idea of ensemble learning is that even if one model makes a mistake, other models can correct it. Case studies based on bearing and gear system fault experiments show that the proposed ensemble learning models have better diagnostic results than the single model in the presence of noise and small data." @default.
- W4200102447 created "2021-12-31" @default.
- W4200102447 creator A5018015529 @default.
- W4200102447 creator A5052659537 @default.
- W4200102447 date "2022-04-01" @default.
- W4200102447 modified "2023-10-18" @default.
- W4200102447 title "Crack fault diagnosis of rotating machine in nuclear power plant based on ensemble learning" @default.
- W4200102447 cites W1988874995 @default.
- W4200102447 cites W2016324154 @default.
- W4200102447 cites W2055649890 @default.
- W4200102447 cites W2060304859 @default.
- W4200102447 cites W2064872819 @default.
- W4200102447 cites W2080989400 @default.
- W4200102447 cites W2125283600 @default.
- W4200102447 cites W2886924644 @default.
- W4200102447 cites W2911964244 @default.
- W4200102447 cites W3128453436 @default.
- W4200102447 cites W3137795735 @default.
- W4200102447 cites W4212883601 @default.
- W4200102447 cites W2021537646 @default.
- W4200102447 doi "https://doi.org/10.1016/j.anucene.2021.108909" @default.
- W4200102447 hasPublicationYear "2022" @default.
- W4200102447 type Work @default.
- W4200102447 citedByCount "16" @default.
- W4200102447 countsByYear W42001024472022 @default.
- W4200102447 countsByYear W42001024472023 @default.
- W4200102447 crossrefType "journal-article" @default.
- W4200102447 hasAuthorship W4200102447A5018015529 @default.
- W4200102447 hasAuthorship W4200102447A5052659537 @default.
- W4200102447 hasBestOaLocation W42001024471 @default.
- W4200102447 hasConcept C115961682 @default.
- W4200102447 hasConcept C119857082 @default.
- W4200102447 hasConcept C119898033 @default.
- W4200102447 hasConcept C121332964 @default.
- W4200102447 hasConcept C127313418 @default.
- W4200102447 hasConcept C154945302 @default.
- W4200102447 hasConcept C163258240 @default.
- W4200102447 hasConcept C165205528 @default.
- W4200102447 hasConcept C175551986 @default.
- W4200102447 hasConcept C17744445 @default.
- W4200102447 hasConcept C185544564 @default.
- W4200102447 hasConcept C199539241 @default.
- W4200102447 hasConcept C202444582 @default.
- W4200102447 hasConcept C2777179996 @default.
- W4200102447 hasConcept C2779979336 @default.
- W4200102447 hasConcept C33923547 @default.
- W4200102447 hasConcept C41008148 @default.
- W4200102447 hasConcept C45942800 @default.
- W4200102447 hasConcept C62520636 @default.
- W4200102447 hasConcept C9652623 @default.
- W4200102447 hasConcept C99498987 @default.
- W4200102447 hasConceptScore W4200102447C115961682 @default.
- W4200102447 hasConceptScore W4200102447C119857082 @default.
- W4200102447 hasConceptScore W4200102447C119898033 @default.
- W4200102447 hasConceptScore W4200102447C121332964 @default.
- W4200102447 hasConceptScore W4200102447C127313418 @default.
- W4200102447 hasConceptScore W4200102447C154945302 @default.
- W4200102447 hasConceptScore W4200102447C163258240 @default.
- W4200102447 hasConceptScore W4200102447C165205528 @default.
- W4200102447 hasConceptScore W4200102447C175551986 @default.
- W4200102447 hasConceptScore W4200102447C17744445 @default.
- W4200102447 hasConceptScore W4200102447C185544564 @default.
- W4200102447 hasConceptScore W4200102447C199539241 @default.
- W4200102447 hasConceptScore W4200102447C202444582 @default.
- W4200102447 hasConceptScore W4200102447C2777179996 @default.
- W4200102447 hasConceptScore W4200102447C2779979336 @default.
- W4200102447 hasConceptScore W4200102447C33923547 @default.
- W4200102447 hasConceptScore W4200102447C41008148 @default.
- W4200102447 hasConceptScore W4200102447C45942800 @default.
- W4200102447 hasConceptScore W4200102447C62520636 @default.
- W4200102447 hasConceptScore W4200102447C9652623 @default.
- W4200102447 hasConceptScore W4200102447C99498987 @default.
- W4200102447 hasFunder F4320306084 @default.
- W4200102447 hasLocation W42001024471 @default.
- W4200102447 hasLocation W42001024472 @default.
- W4200102447 hasOpenAccess W4200102447 @default.
- W4200102447 hasPrimaryLocation W42001024471 @default.
- W4200102447 hasRelatedWork W3136979370 @default.
- W4200102447 hasRelatedWork W3151529617 @default.
- W4200102447 hasRelatedWork W3162132941 @default.
- W4200102447 hasRelatedWork W4220785415 @default.
- W4200102447 hasRelatedWork W4281560664 @default.
- W4200102447 hasRelatedWork W4285741730 @default.
- W4200102447 hasRelatedWork W4292969247 @default.
- W4200102447 hasRelatedWork W4293069612 @default.
- W4200102447 hasRelatedWork W4308112567 @default.
- W4200102447 hasRelatedWork W3214927170 @default.
- W4200102447 hasVolume "168" @default.
- W4200102447 isParatext "false" @default.
- W4200102447 isRetracted "false" @default.
- W4200102447 workType "article" @default.