Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200102736> ?p ?o ?g. }
- W4200102736 endingPage "34" @default.
- W4200102736 startingPage "34" @default.
- W4200102736 abstract "Physiological time series are affected by many factors, making them highly nonlinear and nonstationary. As a consequence, heart rate time series are often considered difficult to predict and handle. However, heart rate behavior can indicate underlying cardiovascular and respiratory diseases as well as mood disorders. Given the importance of accurate modeling and reliable predictions of heart rate fluctuations for the prevention and control of certain diseases, it is paramount to identify models with the best performance in such tasks. The objectives of this study were to compare the results of three different forecasting models (Autoregressive Model, Long Short-Term Memory Network, and Convolutional Long Short-Term Memory Network) trained and tested on heart rate beats per minute data obtained from twelve heterogeneous participants and to identify the architecture with the best performance in terms of modeling and forecasting heart rate behavior. Heart rate beats per minute data were collected using a wearable device over a period of 10 days from twelve different participants who were heterogeneous in age, sex, medical history, and lifestyle behaviors. The goodness of the results produced by the models was measured using both the mean absolute error and the root mean square error as error metrics. Despite the three models showing similar performance, the Autoregressive Model gave the best results in all settings examined. For example, considering one of the participants, the Autoregressive Model gave a mean absolute error of 2.069 (compared to 2.173 of the Long Short-Term Memory Network and 2.138 of the Convolutional Long Short-Term Memory Network), achieving an improvement of 5.027% and 3.335%, respectively. Similar results can be observed for the other participants. The findings of the study suggest that regardless of an individual's age, sex, and lifestyle behaviors, their heart rate largely depends on the pattern observed in the previous few minutes, suggesting that heart rate can be reasonably regarded as an autoregressive process. The findings also suggest that minute-by-minute heart rate prediction can be accurately performed using a linear model, at least in individuals without pathologies that cause heartbeat irregularities. The findings also suggest many possible applications for the Autoregressive Model, in principle in any context where minute-by-minute heart rate prediction is required (arrhythmia detection and analysis of the response to training, among others)." @default.
- W4200102736 created "2021-12-31" @default.
- W4200102736 creator A5008451379 @default.
- W4200102736 creator A5010213771 @default.
- W4200102736 creator A5048462960 @default.
- W4200102736 creator A5076678144 @default.
- W4200102736 date "2021-12-22" @default.
- W4200102736 modified "2023-10-02" @default.
- W4200102736 title "Heart Rate Modeling and Prediction Using Autoregressive Models and Deep Learning" @default.
- W4200102736 cites W1956890440 @default.
- W4200102736 cites W1968631207 @default.
- W4200102736 cites W1984596947 @default.
- W4200102736 cites W2027606646 @default.
- W4200102736 cites W2043161969 @default.
- W4200102736 cites W2064675550 @default.
- W4200102736 cites W2103291683 @default.
- W4200102736 cites W2119013726 @default.
- W4200102736 cites W2154339093 @default.
- W4200102736 cites W2259600703 @default.
- W4200102736 cites W2293449184 @default.
- W4200102736 cites W2529643570 @default.
- W4200102736 cites W2625812463 @default.
- W4200102736 cites W2785539913 @default.
- W4200102736 cites W2792140820 @default.
- W4200102736 cites W2793956967 @default.
- W4200102736 cites W2796126139 @default.
- W4200102736 cites W2801996251 @default.
- W4200102736 cites W2805307317 @default.
- W4200102736 cites W2889814554 @default.
- W4200102736 cites W2899523379 @default.
- W4200102736 cites W2900058591 @default.
- W4200102736 cites W2906158529 @default.
- W4200102736 cites W2962182608 @default.
- W4200102736 cites W2979485437 @default.
- W4200102736 cites W2996954264 @default.
- W4200102736 cites W3005335661 @default.
- W4200102736 cites W3009468168 @default.
- W4200102736 cites W3018390422 @default.
- W4200102736 cites W3032831873 @default.
- W4200102736 cites W3088017652 @default.
- W4200102736 cites W3094715731 @default.
- W4200102736 cites W3097271252 @default.
- W4200102736 cites W3127445005 @default.
- W4200102736 cites W3129224130 @default.
- W4200102736 cites W3138676254 @default.
- W4200102736 cites W3163959533 @default.
- W4200102736 doi "https://doi.org/10.3390/s22010034" @default.
- W4200102736 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35009581" @default.
- W4200102736 hasPublicationYear "2021" @default.
- W4200102736 type Work @default.
- W4200102736 citedByCount "9" @default.
- W4200102736 countsByYear W42001027362022 @default.
- W4200102736 countsByYear W42001027362023 @default.
- W4200102736 crossrefType "journal-article" @default.
- W4200102736 hasAuthorship W4200102736A5008451379 @default.
- W4200102736 hasAuthorship W4200102736A5010213771 @default.
- W4200102736 hasAuthorship W4200102736A5048462960 @default.
- W4200102736 hasAuthorship W4200102736A5076678144 @default.
- W4200102736 hasBestOaLocation W42001027361 @default.
- W4200102736 hasConcept C105795698 @default.
- W4200102736 hasConcept C119857082 @default.
- W4200102736 hasConcept C121332964 @default.
- W4200102736 hasConcept C126322002 @default.
- W4200102736 hasConcept C139945424 @default.
- W4200102736 hasConcept C150217764 @default.
- W4200102736 hasConcept C151406439 @default.
- W4200102736 hasConcept C154945302 @default.
- W4200102736 hasConcept C159877910 @default.
- W4200102736 hasConcept C188154048 @default.
- W4200102736 hasConcept C2777953023 @default.
- W4200102736 hasConcept C33923547 @default.
- W4200102736 hasConcept C41008148 @default.
- W4200102736 hasConcept C61797465 @default.
- W4200102736 hasConcept C62520636 @default.
- W4200102736 hasConcept C71635504 @default.
- W4200102736 hasConcept C71924100 @default.
- W4200102736 hasConcept C84393581 @default.
- W4200102736 hasConceptScore W4200102736C105795698 @default.
- W4200102736 hasConceptScore W4200102736C119857082 @default.
- W4200102736 hasConceptScore W4200102736C121332964 @default.
- W4200102736 hasConceptScore W4200102736C126322002 @default.
- W4200102736 hasConceptScore W4200102736C139945424 @default.
- W4200102736 hasConceptScore W4200102736C150217764 @default.
- W4200102736 hasConceptScore W4200102736C151406439 @default.
- W4200102736 hasConceptScore W4200102736C154945302 @default.
- W4200102736 hasConceptScore W4200102736C159877910 @default.
- W4200102736 hasConceptScore W4200102736C188154048 @default.
- W4200102736 hasConceptScore W4200102736C2777953023 @default.
- W4200102736 hasConceptScore W4200102736C33923547 @default.
- W4200102736 hasConceptScore W4200102736C41008148 @default.
- W4200102736 hasConceptScore W4200102736C61797465 @default.
- W4200102736 hasConceptScore W4200102736C62520636 @default.
- W4200102736 hasConceptScore W4200102736C71635504 @default.
- W4200102736 hasConceptScore W4200102736C71924100 @default.
- W4200102736 hasConceptScore W4200102736C84393581 @default.
- W4200102736 hasFunder F4320334789 @default.
- W4200102736 hasIssue "1" @default.
- W4200102736 hasLocation W42001027361 @default.