Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200104848> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4200104848 abstract "Abstract Hybrid modeling, meaning the integration of data-driven and knowledge-based methods, is quickly gaining popularity among many research fields, including bioprocess engineering and development. Recently, the data-driven part of hybrid methods have been largely extended with machine learning algorithms (e.g., artificial neural network, support vector regression), while the mechanistic part is typically using differential equations to describe the dynamics of the process based on its current state. In this work we present an alternative hybrid model formulation that merges the advantages of Gaussian Process State Space Models and the numerical approximation of differential equation systems through full discretization. The use of Gaussian Process Models to describe complex bioprocesses in batch, fed-batch, has been reported in several applications. Nevertheless, handling the dynamics of the states of the system, known to have a continuous time-dependent evolution governed by implicit dynamics, has proven to be a major challenge. Discretization of the process on the sampling steps is a source of several complications, as are: 1) not being able to handle multi-rate date sets, 2) the step-size of the derivative approximation is defined by the sampling frequency, and 3) a high sensitivity to sampling and addition errors. We present a coupling of polynomial regression with Gaussian Process Models as representation of the right-hand side of the ordinary differential equation system and demonstrate the advantages in a typical fed-batch cultivation for monoclonal antibody production." @default.
- W4200104848 created "2021-12-31" @default.
- W4200104848 creator A5022278329 @default.
- W4200104848 creator A5025899032 @default.
- W4200104848 creator A5037505428 @default.
- W4200104848 creator A5038827597 @default.
- W4200104848 date "2021-12-27" @default.
- W4200104848 modified "2023-10-16" @default.
- W4200104848 title "Hybrid Gaussian Process Models for continuous time series in bolus fed-batch cultures" @default.
- W4200104848 cites W1502922572 @default.
- W4200104848 cites W1974398703 @default.
- W4200104848 cites W1990121056 @default.
- W4200104848 cites W2005529933 @default.
- W4200104848 cites W2043220524 @default.
- W4200104848 cites W2124278758 @default.
- W4200104848 cites W2158324401 @default.
- W4200104848 cites W2480512873 @default.
- W4200104848 cites W2803275621 @default.
- W4200104848 cites W2962685604 @default.
- W4200104848 cites W2972056158 @default.
- W4200104848 cites W3026686877 @default.
- W4200104848 cites W3110054967 @default.
- W4200104848 cites W3172711957 @default.
- W4200104848 doi "https://doi.org/10.1101/2021.12.27.474269" @default.
- W4200104848 hasPublicationYear "2021" @default.
- W4200104848 type Work @default.
- W4200104848 citedByCount "0" @default.
- W4200104848 crossrefType "posted-content" @default.
- W4200104848 hasAuthorship W4200104848A5022278329 @default.
- W4200104848 hasAuthorship W4200104848A5025899032 @default.
- W4200104848 hasAuthorship W4200104848A5037505428 @default.
- W4200104848 hasAuthorship W4200104848A5038827597 @default.
- W4200104848 hasBestOaLocation W42001048481 @default.
- W4200104848 hasConcept C11413529 @default.
- W4200104848 hasConcept C119857082 @default.
- W4200104848 hasConcept C121332964 @default.
- W4200104848 hasConcept C126255220 @default.
- W4200104848 hasConcept C129537906 @default.
- W4200104848 hasConcept C134306372 @default.
- W4200104848 hasConcept C163716315 @default.
- W4200104848 hasConcept C28826006 @default.
- W4200104848 hasConcept C33923547 @default.
- W4200104848 hasConcept C41008148 @default.
- W4200104848 hasConcept C50897621 @default.
- W4200104848 hasConcept C61326573 @default.
- W4200104848 hasConcept C62520636 @default.
- W4200104848 hasConcept C73000952 @default.
- W4200104848 hasConcept C97355855 @default.
- W4200104848 hasConceptScore W4200104848C11413529 @default.
- W4200104848 hasConceptScore W4200104848C119857082 @default.
- W4200104848 hasConceptScore W4200104848C121332964 @default.
- W4200104848 hasConceptScore W4200104848C126255220 @default.
- W4200104848 hasConceptScore W4200104848C129537906 @default.
- W4200104848 hasConceptScore W4200104848C134306372 @default.
- W4200104848 hasConceptScore W4200104848C163716315 @default.
- W4200104848 hasConceptScore W4200104848C28826006 @default.
- W4200104848 hasConceptScore W4200104848C33923547 @default.
- W4200104848 hasConceptScore W4200104848C41008148 @default.
- W4200104848 hasConceptScore W4200104848C50897621 @default.
- W4200104848 hasConceptScore W4200104848C61326573 @default.
- W4200104848 hasConceptScore W4200104848C62520636 @default.
- W4200104848 hasConceptScore W4200104848C73000952 @default.
- W4200104848 hasConceptScore W4200104848C97355855 @default.
- W4200104848 hasLocation W42001048481 @default.
- W4200104848 hasLocation W42001048482 @default.
- W4200104848 hasOpenAccess W4200104848 @default.
- W4200104848 hasPrimaryLocation W42001048481 @default.
- W4200104848 hasRelatedWork W1995901926 @default.
- W4200104848 hasRelatedWork W2337187786 @default.
- W4200104848 hasRelatedWork W2950369349 @default.
- W4200104848 hasRelatedWork W2966570425 @default.
- W4200104848 hasRelatedWork W3020674464 @default.
- W4200104848 hasRelatedWork W3121780775 @default.
- W4200104848 hasRelatedWork W3125611040 @default.
- W4200104848 hasRelatedWork W3159366849 @default.
- W4200104848 hasRelatedWork W4226126810 @default.
- W4200104848 hasRelatedWork W4299914866 @default.
- W4200104848 isParatext "false" @default.
- W4200104848 isRetracted "false" @default.
- W4200104848 workType "article" @default.