Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200107889> ?p ?o ?g. }
- W4200107889 endingPage "171" @default.
- W4200107889 startingPage "158" @default.
- W4200107889 abstract "Landfills release significant odorous compounds from the working surface, and their emission rates are crucial for odor and health risk assessment. A total of 99 valid datasets of odor emissions from a landfill working surface were obtained from in situ monitoring for 9 months. Meteorological parameters (temperature, humidity, atmospheric pressure) and waste properties (contents of protein, lipid, carbohydrate, ash, and moisture) were used to construct artificial neural network (ANN) models for the emission rate prediction of typical compounds. The optimal structures and performance of the ANN models were determined by comparing and training with different structural configurations. The ANN models with genetic algorithm (GA) optimization show better performance than those without GA. With the data distribution of input parameters, the ranges of the emission rates of typical compounds were predicted by combining the established ANN models and the Monte Carlo approach. The sensitivity and uncertainty analyses revealed that temperature, atmospheric pressure, protein and lipid contents are parameters sensitive to emission rates, and meteorological parameters have significant impacts on the uncertainty. The established ANN models for the prediction of emission rates can provide scientific evidence and an approach to assess and control the odor and health risk in waste sectors." @default.
- W4200107889 created "2021-12-31" @default.
- W4200107889 creator A5003589510 @default.
- W4200107889 creator A5008849522 @default.
- W4200107889 creator A5038921115 @default.
- W4200107889 creator A5042275051 @default.
- W4200107889 creator A5046596619 @default.
- W4200107889 creator A5057671585 @default.
- W4200107889 creator A5083984422 @default.
- W4200107889 date "2022-02-01" @default.
- W4200107889 modified "2023-10-10" @default.
- W4200107889 title "Artificial neural network (ANN) modeling for the prediction of odor emission rates from landfill working surface" @default.
- W4200107889 cites W1093629364 @default.
- W4200107889 cites W1176220669 @default.
- W4200107889 cites W1775520196 @default.
- W4200107889 cites W1920702804 @default.
- W4200107889 cites W1976469369 @default.
- W4200107889 cites W1981030726 @default.
- W4200107889 cites W1983590249 @default.
- W4200107889 cites W1995341919 @default.
- W4200107889 cites W2002134958 @default.
- W4200107889 cites W2029415846 @default.
- W4200107889 cites W2035846061 @default.
- W4200107889 cites W2048224752 @default.
- W4200107889 cites W2062579242 @default.
- W4200107889 cites W2079468789 @default.
- W4200107889 cites W2079614042 @default.
- W4200107889 cites W2093239868 @default.
- W4200107889 cites W2143111631 @default.
- W4200107889 cites W2294163318 @default.
- W4200107889 cites W2401800475 @default.
- W4200107889 cites W2402883412 @default.
- W4200107889 cites W2485044672 @default.
- W4200107889 cites W2504605414 @default.
- W4200107889 cites W2505066333 @default.
- W4200107889 cites W2511395663 @default.
- W4200107889 cites W2514960500 @default.
- W4200107889 cites W2532024444 @default.
- W4200107889 cites W2537556156 @default.
- W4200107889 cites W2547842970 @default.
- W4200107889 cites W2563267149 @default.
- W4200107889 cites W2609362275 @default.
- W4200107889 cites W2734464954 @default.
- W4200107889 cites W2752532721 @default.
- W4200107889 cites W2753594511 @default.
- W4200107889 cites W2766519973 @default.
- W4200107889 cites W2789645099 @default.
- W4200107889 cites W2791647380 @default.
- W4200107889 cites W284264172 @default.
- W4200107889 cites W2875363428 @default.
- W4200107889 cites W2883944250 @default.
- W4200107889 cites W2885430423 @default.
- W4200107889 cites W2885464146 @default.
- W4200107889 cites W2893482420 @default.
- W4200107889 cites W2900122422 @default.
- W4200107889 cites W2900636727 @default.
- W4200107889 cites W2909358758 @default.
- W4200107889 cites W2943808192 @default.
- W4200107889 cites W2951660644 @default.
- W4200107889 cites W2965073284 @default.
- W4200107889 cites W3002326265 @default.
- W4200107889 cites W3004099498 @default.
- W4200107889 cites W3038223360 @default.
- W4200107889 cites W3048376051 @default.
- W4200107889 cites W3134563434 @default.
- W4200107889 cites W4230542890 @default.
- W4200107889 doi "https://doi.org/10.1016/j.wasman.2021.11.045" @default.
- W4200107889 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34896736" @default.
- W4200107889 hasPublicationYear "2022" @default.
- W4200107889 type Work @default.
- W4200107889 citedByCount "17" @default.
- W4200107889 countsByYear W42001078892022 @default.
- W4200107889 countsByYear W42001078892023 @default.
- W4200107889 crossrefType "journal-article" @default.
- W4200107889 hasAuthorship W4200107889A5003589510 @default.
- W4200107889 hasAuthorship W4200107889A5008849522 @default.
- W4200107889 hasAuthorship W4200107889A5038921115 @default.
- W4200107889 hasAuthorship W4200107889A5042275051 @default.
- W4200107889 hasAuthorship W4200107889A5046596619 @default.
- W4200107889 hasAuthorship W4200107889A5057671585 @default.
- W4200107889 hasAuthorship W4200107889A5083984422 @default.
- W4200107889 hasConcept C105795698 @default.
- W4200107889 hasConcept C119857082 @default.
- W4200107889 hasConcept C121332964 @default.
- W4200107889 hasConcept C127413603 @default.
- W4200107889 hasConcept C150077022 @default.
- W4200107889 hasConcept C151420433 @default.
- W4200107889 hasConcept C153294291 @default.
- W4200107889 hasConcept C158960510 @default.
- W4200107889 hasConcept C176864760 @default.
- W4200107889 hasConcept C178790620 @default.
- W4200107889 hasConcept C185592680 @default.
- W4200107889 hasConcept C186060115 @default.
- W4200107889 hasConcept C19499675 @default.
- W4200107889 hasConcept C21200559 @default.
- W4200107889 hasConcept C24326235 @default.
- W4200107889 hasConcept C2778916471 @default.
- W4200107889 hasConcept C33923547 @default.