Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200110467> ?p ?o ?g. }
- W4200110467 endingPage "23" @default.
- W4200110467 startingPage "1" @default.
- W4200110467 abstract "The backpropagation neural network (BPNN) algorithm of artificial intelligence (AI) is utilized to predict A+H shares price for helping investors reduce the risk of stock investment. First, the genetic algorithm (GA) is used to optimize BPNN, and a model that can predict multi-day stock prices is established. Then, the Principal Component Analysis (PCA) algorithm is introduced to improve the GA-BP model, aiming to provide a practical approach for analyzing the market risks of the A+H shares. The experimental results show that for A shares, the model has the best prediction effect on the price of Bank of China (BC), and the average prediction errors of opening price, maximum price, minimum price, as well as closing price are 0.0236, 0.0262, 0.0294 and 0.0339, respectively. For H shares, the model constructed has the best effect on the price prediction of China Merchants Bank (CMB). The average prediction errors of opening price, maximum price, minimum price and closing price are 0.0276, 0.0422, 0.0194 and 0.0619, respectively." @default.
- W4200110467 created "2021-12-31" @default.
- W4200110467 creator A5021066503 @default.
- W4200110467 creator A5066173577 @default.
- W4200110467 creator A5072234330 @default.
- W4200110467 creator A5086728814 @default.
- W4200110467 date "2021-12-15" @default.
- W4200110467 modified "2023-09-27" @default.
- W4200110467 title "An Improved BPNN Algorithm Based on Deep Learning Technology to Analyze the Market Risks of A+H Shares" @default.
- W4200110467 cites W2186386726 @default.
- W4200110467 cites W2784364930 @default.
- W4200110467 cites W2789528974 @default.
- W4200110467 cites W2901438587 @default.
- W4200110467 cites W2901699584 @default.
- W4200110467 cites W2906393807 @default.
- W4200110467 cites W2910836230 @default.
- W4200110467 cites W2911878047 @default.
- W4200110467 cites W2912509860 @default.
- W4200110467 cites W2913094285 @default.
- W4200110467 cites W2914538212 @default.
- W4200110467 cites W2919328010 @default.
- W4200110467 cites W2921085109 @default.
- W4200110467 cites W2929033003 @default.
- W4200110467 cites W2930621949 @default.
- W4200110467 cites W2939156083 @default.
- W4200110467 cites W2944469692 @default.
- W4200110467 cites W2948366632 @default.
- W4200110467 cites W2965281538 @default.
- W4200110467 cites W2966861509 @default.
- W4200110467 cites W2979729861 @default.
- W4200110467 cites W2981491155 @default.
- W4200110467 cites W3002166884 @default.
- W4200110467 cites W3004231151 @default.
- W4200110467 cites W3006618723 @default.
- W4200110467 cites W3032661174 @default.
- W4200110467 cites W3033607373 @default.
- W4200110467 cites W3093992164 @default.
- W4200110467 cites W3110831436 @default.
- W4200110467 cites W3121164746 @default.
- W4200110467 cites W3121469103 @default.
- W4200110467 cites W3134729335 @default.
- W4200110467 cites W3158779294 @default.
- W4200110467 cites W3182779748 @default.
- W4200110467 cites W3186827843 @default.
- W4200110467 cites W3197094379 @default.
- W4200110467 doi "https://doi.org/10.4018/jgim.293277" @default.
- W4200110467 hasPublicationYear "2021" @default.
- W4200110467 type Work @default.
- W4200110467 citedByCount "10" @default.
- W4200110467 countsByYear W42001104672022 @default.
- W4200110467 countsByYear W42001104672023 @default.
- W4200110467 crossrefType "journal-article" @default.
- W4200110467 hasAuthorship W4200110467A5021066503 @default.
- W4200110467 hasAuthorship W4200110467A5066173577 @default.
- W4200110467 hasAuthorship W4200110467A5072234330 @default.
- W4200110467 hasAuthorship W4200110467A5086728814 @default.
- W4200110467 hasBestOaLocation W42001104671 @default.
- W4200110467 hasConcept C10138342 @default.
- W4200110467 hasConcept C119857082 @default.
- W4200110467 hasConcept C143724316 @default.
- W4200110467 hasConcept C149782125 @default.
- W4200110467 hasConcept C151730666 @default.
- W4200110467 hasConcept C154945302 @default.
- W4200110467 hasConcept C155032097 @default.
- W4200110467 hasConcept C162324750 @default.
- W4200110467 hasConcept C17744445 @default.
- W4200110467 hasConcept C199539241 @default.
- W4200110467 hasConcept C27438332 @default.
- W4200110467 hasConcept C27548731 @default.
- W4200110467 hasConcept C2778775528 @default.
- W4200110467 hasConcept C2780299701 @default.
- W4200110467 hasConcept C2780762169 @default.
- W4200110467 hasConcept C2988984586 @default.
- W4200110467 hasConcept C41008148 @default.
- W4200110467 hasConcept C50644808 @default.
- W4200110467 hasConcept C86803240 @default.
- W4200110467 hasConcept C94625758 @default.
- W4200110467 hasConceptScore W4200110467C10138342 @default.
- W4200110467 hasConceptScore W4200110467C119857082 @default.
- W4200110467 hasConceptScore W4200110467C143724316 @default.
- W4200110467 hasConceptScore W4200110467C149782125 @default.
- W4200110467 hasConceptScore W4200110467C151730666 @default.
- W4200110467 hasConceptScore W4200110467C154945302 @default.
- W4200110467 hasConceptScore W4200110467C155032097 @default.
- W4200110467 hasConceptScore W4200110467C162324750 @default.
- W4200110467 hasConceptScore W4200110467C17744445 @default.
- W4200110467 hasConceptScore W4200110467C199539241 @default.
- W4200110467 hasConceptScore W4200110467C27438332 @default.
- W4200110467 hasConceptScore W4200110467C27548731 @default.
- W4200110467 hasConceptScore W4200110467C2778775528 @default.
- W4200110467 hasConceptScore W4200110467C2780299701 @default.
- W4200110467 hasConceptScore W4200110467C2780762169 @default.
- W4200110467 hasConceptScore W4200110467C2988984586 @default.
- W4200110467 hasConceptScore W4200110467C41008148 @default.
- W4200110467 hasConceptScore W4200110467C50644808 @default.
- W4200110467 hasConceptScore W4200110467C86803240 @default.
- W4200110467 hasConceptScore W4200110467C94625758 @default.
- W4200110467 hasIssue "7" @default.