Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200111962> ?p ?o ?g. }
- W4200111962 endingPage "168" @default.
- W4200111962 startingPage "158" @default.
- W4200111962 abstract "Accurate estimation of the spatial distribution of pollutants, such as heavy metals, is indispensable in investigation of contaminated sites. In this paper, we develop a novel deep learning (DL) algorithm, in which the data value of the target point is predicted by a nearest-neighbor neural network. Using 20 hypothetical sites and a real-world one, the developed DL is compared with several commonly used kriging algorithms (e.g., ordinary kriging). By taking the results of ordinary kriging as the benchmark, the interpolation accuracy can be improved by an average of 38.2% and 11.2–36.6%, respectively. The comparisons also indicate that the new method performs much better in cases with significant spatial variability by alleviating the smoothing effect and the edge effect in the kriging. Upon further examination of the developed method, the prediction accuracy is found to first increase and then decrease with the number of neighbor points. Moreover, the influence of the sampling density is limited if the number exceeds a certain threshold (e.g., n = 64 in our case). As a preliminary attempt of applying the DL algorithm at individual contaminated sites, this work provides a general alternative method to identify the spatial distribution of heavy metals." @default.
- W4200111962 created "2021-12-31" @default.
- W4200111962 creator A5013122475 @default.
- W4200111962 creator A5040674803 @default.
- W4200111962 creator A5041949027 @default.
- W4200111962 creator A5070262264 @default.
- W4200111962 creator A5076826355 @default.
- W4200111962 date "2021-12-23" @default.
- W4200111962 modified "2023-10-14" @default.
- W4200111962 title "Application of the Deep Learning Algorithm to Identify the Spatial Distribution of Heavy Metals at Contaminated Sites" @default.
- W4200111962 cites W1964140818 @default.
- W4200111962 cites W1970510112 @default.
- W4200111962 cites W1972494027 @default.
- W4200111962 cites W1974547720 @default.
- W4200111962 cites W1987100352 @default.
- W4200111962 cites W1988958653 @default.
- W4200111962 cites W1997936561 @default.
- W4200111962 cites W2009810657 @default.
- W4200111962 cites W2032969363 @default.
- W4200111962 cites W2040316938 @default.
- W4200111962 cites W2041456900 @default.
- W4200111962 cites W2043210251 @default.
- W4200111962 cites W2047810712 @default.
- W4200111962 cites W2050831818 @default.
- W4200111962 cites W2060235012 @default.
- W4200111962 cites W2073059691 @default.
- W4200111962 cites W2074984119 @default.
- W4200111962 cites W2076063813 @default.
- W4200111962 cites W2077750106 @default.
- W4200111962 cites W2079142299 @default.
- W4200111962 cites W2082274701 @default.
- W4200111962 cites W2084333622 @default.
- W4200111962 cites W2087221440 @default.
- W4200111962 cites W2090164539 @default.
- W4200111962 cites W2106600817 @default.
- W4200111962 cites W2113671441 @default.
- W4200111962 cites W2153700325 @default.
- W4200111962 cites W2194775991 @default.
- W4200111962 cites W2483149670 @default.
- W4200111962 cites W2565516711 @default.
- W4200111962 cites W2755905524 @default.
- W4200111962 cites W2790913225 @default.
- W4200111962 cites W2792126966 @default.
- W4200111962 cites W2810270273 @default.
- W4200111962 cites W2894463230 @default.
- W4200111962 cites W2900880614 @default.
- W4200111962 cites W2903042037 @default.
- W4200111962 cites W2919115771 @default.
- W4200111962 cites W2936185297 @default.
- W4200111962 cites W2939928047 @default.
- W4200111962 cites W2963446712 @default.
- W4200111962 cites W2971401373 @default.
- W4200111962 cites W2978980369 @default.
- W4200111962 cites W3000062952 @default.
- W4200111962 cites W3010437674 @default.
- W4200111962 cites W3011301911 @default.
- W4200111962 cites W3016597981 @default.
- W4200111962 cites W3035869533 @default.
- W4200111962 cites W3036577924 @default.
- W4200111962 cites W3042432682 @default.
- W4200111962 cites W3085485679 @default.
- W4200111962 cites W3157601298 @default.
- W4200111962 doi "https://doi.org/10.1021/acsestengg.1c00224" @default.
- W4200111962 hasPublicationYear "2021" @default.
- W4200111962 type Work @default.
- W4200111962 citedByCount "7" @default.
- W4200111962 countsByYear W42001119622022 @default.
- W4200111962 countsByYear W42001119622023 @default.
- W4200111962 crossrefType "journal-article" @default.
- W4200111962 hasAuthorship W4200111962A5013122475 @default.
- W4200111962 hasAuthorship W4200111962A5040674803 @default.
- W4200111962 hasAuthorship W4200111962A5041949027 @default.
- W4200111962 hasAuthorship W4200111962A5070262264 @default.
- W4200111962 hasAuthorship W4200111962A5076826355 @default.
- W4200111962 hasConcept C104114177 @default.
- W4200111962 hasConcept C105795698 @default.
- W4200111962 hasConcept C106131492 @default.
- W4200111962 hasConcept C110121322 @default.
- W4200111962 hasConcept C113238511 @default.
- W4200111962 hasConcept C11413529 @default.
- W4200111962 hasConcept C125572338 @default.
- W4200111962 hasConcept C127313418 @default.
- W4200111962 hasConcept C13280743 @default.
- W4200111962 hasConcept C134306372 @default.
- W4200111962 hasConcept C137800194 @default.
- W4200111962 hasConcept C140779682 @default.
- W4200111962 hasConcept C150060386 @default.
- W4200111962 hasConcept C154945302 @default.
- W4200111962 hasConcept C185798385 @default.
- W4200111962 hasConcept C203332170 @default.
- W4200111962 hasConcept C205203396 @default.
- W4200111962 hasConcept C2777016058 @default.
- W4200111962 hasConcept C31972630 @default.
- W4200111962 hasConcept C33923547 @default.
- W4200111962 hasConcept C3770464 @default.
- W4200111962 hasConcept C41008148 @default.
- W4200111962 hasConcept C50644808 @default.
- W4200111962 hasConcept C81692654 @default.