Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200116323> ?p ?o ?g. }
- W4200116323 endingPage "8401" @default.
- W4200116323 startingPage "8401" @default.
- W4200116323 abstract "Traffic accidents are of worldwide concern, as they are one of the leading causes of death globally. One policy designed to cope with them is the design and deployment of road safety systems. These aim to predict crashes based on historical records, provided by new Internet of Things (IoT) technologies, to enhance traffic flow management and promote safer roads. Increasing data availability has helped machine learning (ML) to address the prediction of crashes and their severity. The literature reports numerous contributions regarding survey papers, experimental comparisons of various techniques, and the design of new methods at the point where crash severity prediction (CSP) and ML converge. Despite such progress, and as far as we know, there are no comprehensive research articles that theoretically and practically approach the model selection problem (MSP) in CSP. Thus, this paper introduces a bibliometric analysis and experimental benchmark of ML and automated machine learning (AutoML) as a suitable approach to automatically address the MSP in CSP. Firstly, 2318 bibliographic references were consulted to identify relevant authors, trending topics, keywords evolution, and the most common ML methods used in related-case studies, which revealed an opportunity for the use AutoML in the transportation field. Then, we compared AutoML (AutoGluon, Auto-sklearn, TPOT) and ML (CatBoost, Decision Tree, Extra Trees, Gradient Boosting, Gaussian Naive Bayes, Light Gradient Boosting Machine, Random Forest) methods in three case studies using open data portals belonging to the cities of Medellín, Bogotá, and Bucaramanga in Colombia. Our experimentation reveals that AutoGluon and CatBoost are competitive and robust ML approaches to deal with various CSP problems. In addition, we concluded that general-purpose AutoML effectively supports the MSP in CSP without developing domain-focused AutoML methods for this supervised learning problem. Finally, based on the results obtained, we introduce challenges and research opportunities that the community should explore to enhance the contributions that ML and AutoML can bring to CSP and other transportation areas." @default.
- W4200116323 created "2021-12-31" @default.
- W4200116323 creator A5035001080 @default.
- W4200116323 creator A5052403380 @default.
- W4200116323 creator A5060490526 @default.
- W4200116323 date "2021-12-16" @default.
- W4200116323 modified "2023-10-16" @default.
- W4200116323 title "A Bibliometric Analysis and Benchmark of Machine Learning and AutoML in Crash Severity Prediction: The Case Study of Three Colombian Cities" @default.
- W4200116323 cites W1977619318 @default.
- W4200116323 cites W2007707130 @default.
- W4200116323 cites W2015605078 @default.
- W4200116323 cites W2038083916 @default.
- W4200116323 cites W2095033980 @default.
- W4200116323 cites W2129660761 @default.
- W4200116323 cites W2138273245 @default.
- W4200116323 cites W2151554678 @default.
- W4200116323 cites W2157730700 @default.
- W4200116323 cites W2165466912 @default.
- W4200116323 cites W2190194936 @default.
- W4200116323 cites W2460404912 @default.
- W4200116323 cites W2528491735 @default.
- W4200116323 cites W2618924819 @default.
- W4200116323 cites W2745090846 @default.
- W4200116323 cites W2750591756 @default.
- W4200116323 cites W2755950973 @default.
- W4200116323 cites W2802508687 @default.
- W4200116323 cites W2886576602 @default.
- W4200116323 cites W2897805291 @default.
- W4200116323 cites W2898873842 @default.
- W4200116323 cites W2899037650 @default.
- W4200116323 cites W2901772120 @default.
- W4200116323 cites W2902834302 @default.
- W4200116323 cites W2913985905 @default.
- W4200116323 cites W2914666594 @default.
- W4200116323 cites W2941110559 @default.
- W4200116323 cites W2944802617 @default.
- W4200116323 cites W2947982105 @default.
- W4200116323 cites W2963017062 @default.
- W4200116323 cites W2963048283 @default.
- W4200116323 cites W2973700402 @default.
- W4200116323 cites W2981731882 @default.
- W4200116323 cites W2991137082 @default.
- W4200116323 cites W2996309201 @default.
- W4200116323 cites W3000998105 @default.
- W4200116323 cites W3006260484 @default.
- W4200116323 cites W3006913750 @default.
- W4200116323 cites W3008021512 @default.
- W4200116323 cites W3010639929 @default.
- W4200116323 cites W3033008316 @default.
- W4200116323 cites W3038712064 @default.
- W4200116323 cites W3041192002 @default.
- W4200116323 cites W3043432080 @default.
- W4200116323 cites W3045954046 @default.
- W4200116323 cites W3046883034 @default.
- W4200116323 cites W3082998439 @default.
- W4200116323 cites W3091123608 @default.
- W4200116323 cites W3093697928 @default.
- W4200116323 cites W3096310447 @default.
- W4200116323 cites W3097953753 @default.
- W4200116323 cites W3103443220 @default.
- W4200116323 cites W3137758634 @default.
- W4200116323 cites W3160856016 @default.
- W4200116323 cites W3197260976 @default.
- W4200116323 cites W3201485800 @default.
- W4200116323 cites W3206704750 @default.
- W4200116323 cites W3207932876 @default.
- W4200116323 cites W4240516790 @default.
- W4200116323 doi "https://doi.org/10.3390/s21248401" @default.
- W4200116323 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34960494" @default.
- W4200116323 hasPublicationYear "2021" @default.
- W4200116323 type Work @default.
- W4200116323 citedByCount "6" @default.
- W4200116323 countsByYear W42001163232022 @default.
- W4200116323 countsByYear W42001163232023 @default.
- W4200116323 crossrefType "journal-article" @default.
- W4200116323 hasAuthorship W4200116323A5035001080 @default.
- W4200116323 hasAuthorship W4200116323A5052403380 @default.
- W4200116323 hasAuthorship W4200116323A5060490526 @default.
- W4200116323 hasBestOaLocation W42001163231 @default.
- W4200116323 hasConcept C119857082 @default.
- W4200116323 hasConcept C12267149 @default.
- W4200116323 hasConcept C127413603 @default.
- W4200116323 hasConcept C13280743 @default.
- W4200116323 hasConcept C154945302 @default.
- W4200116323 hasConcept C169258074 @default.
- W4200116323 hasConcept C183469790 @default.
- W4200116323 hasConcept C185798385 @default.
- W4200116323 hasConcept C199360897 @default.
- W4200116323 hasConcept C205649164 @default.
- W4200116323 hasConcept C2522767166 @default.
- W4200116323 hasConcept C2776654903 @default.
- W4200116323 hasConcept C38652104 @default.
- W4200116323 hasConcept C41008148 @default.
- W4200116323 hasConcept C42475967 @default.
- W4200116323 hasConcept C46686674 @default.
- W4200116323 hasConcept C52001869 @default.
- W4200116323 hasConcept C70153297 @default.
- W4200116323 hasConcept C84525736 @default.