Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200117360> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4200117360 endingPage "13" @default.
- W4200117360 startingPage "1" @default.
- W4200117360 abstract "Nowadays, deep learning has made great achievements in the field of rotating machinery fault diagnosis. But in the practical engineering scenarios, when facing a large number of unlabeled data and variable operating conditions, only using a deep learning algorithm may reduce the performance. In order to solve the above problem, this paper uses a method of combining transfer learning with deep learning. First, the deep shrinkage residual network is constructed by adding soft thresholds to extract the characteristics of bearing vibration data under noise redundancy. Then, the joint maximum mean deviation (JMMD) criterion and conditional domain adversarial (CDA) learning domain adapting network are used to align the source and target domains. At the same time, adding transferable semantic augmentation (TSA) regular items improves alignment performance between classes. Finally, the proposed model is verified by three experiments: variable load, variable speed, and variable noise, which overcomes the shortcomings of traditional deep learning and shallow transfer learning algorithms." @default.
- W4200117360 created "2021-12-31" @default.
- W4200117360 creator A5009164922 @default.
- W4200117360 creator A5018194089 @default.
- W4200117360 creator A5025027033 @default.
- W4200117360 creator A5066081421 @default.
- W4200117360 date "2021-12-06" @default.
- W4200117360 modified "2023-10-10" @default.
- W4200117360 title "Bearing Fault Diagnosis under Variable Working Conditions Based on Deep Residual Shrinkage Networks and Transfer Learning" @default.
- W4200117360 cites W1597576211 @default.
- W4200117360 cites W2033800551 @default.
- W4200117360 cites W2072857564 @default.
- W4200117360 cites W2115403315 @default.
- W4200117360 cites W2164943005 @default.
- W4200117360 cites W2165698076 @default.
- W4200117360 cites W2230524333 @default.
- W4200117360 cites W2253429366 @default.
- W4200117360 cites W2480364715 @default.
- W4200117360 cites W2583100213 @default.
- W4200117360 cites W2900367617 @default.
- W4200117360 cites W2912412749 @default.
- W4200117360 cites W2916091221 @default.
- W4200117360 cites W2927893014 @default.
- W4200117360 cites W2939535241 @default.
- W4200117360 cites W2971654674 @default.
- W4200117360 cites W2977117446 @default.
- W4200117360 cites W3015913963 @default.
- W4200117360 cites W3082465534 @default.
- W4200117360 cites W3098200700 @default.
- W4200117360 cites W3118534614 @default.
- W4200117360 cites W3157943311 @default.
- W4200117360 cites W3169117630 @default.
- W4200117360 cites W3169886559 @default.
- W4200117360 doi "https://doi.org/10.1155/2021/5714240" @default.
- W4200117360 hasPublicationYear "2021" @default.
- W4200117360 type Work @default.
- W4200117360 citedByCount "6" @default.
- W4200117360 countsByYear W42001173602022 @default.
- W4200117360 countsByYear W42001173602023 @default.
- W4200117360 crossrefType "journal-article" @default.
- W4200117360 hasAuthorship W4200117360A5009164922 @default.
- W4200117360 hasAuthorship W4200117360A5018194089 @default.
- W4200117360 hasAuthorship W4200117360A5025027033 @default.
- W4200117360 hasAuthorship W4200117360A5066081421 @default.
- W4200117360 hasBestOaLocation W42001173601 @default.
- W4200117360 hasConcept C108583219 @default.
- W4200117360 hasConcept C111919701 @default.
- W4200117360 hasConcept C11413529 @default.
- W4200117360 hasConcept C115961682 @default.
- W4200117360 hasConcept C119857082 @default.
- W4200117360 hasConcept C134306372 @default.
- W4200117360 hasConcept C150899416 @default.
- W4200117360 hasConcept C152124472 @default.
- W4200117360 hasConcept C153180895 @default.
- W4200117360 hasConcept C154945302 @default.
- W4200117360 hasConcept C155512373 @default.
- W4200117360 hasConcept C182365436 @default.
- W4200117360 hasConcept C33923547 @default.
- W4200117360 hasConcept C41008148 @default.
- W4200117360 hasConcept C99498987 @default.
- W4200117360 hasConceptScore W4200117360C108583219 @default.
- W4200117360 hasConceptScore W4200117360C111919701 @default.
- W4200117360 hasConceptScore W4200117360C11413529 @default.
- W4200117360 hasConceptScore W4200117360C115961682 @default.
- W4200117360 hasConceptScore W4200117360C119857082 @default.
- W4200117360 hasConceptScore W4200117360C134306372 @default.
- W4200117360 hasConceptScore W4200117360C150899416 @default.
- W4200117360 hasConceptScore W4200117360C152124472 @default.
- W4200117360 hasConceptScore W4200117360C153180895 @default.
- W4200117360 hasConceptScore W4200117360C154945302 @default.
- W4200117360 hasConceptScore W4200117360C155512373 @default.
- W4200117360 hasConceptScore W4200117360C182365436 @default.
- W4200117360 hasConceptScore W4200117360C33923547 @default.
- W4200117360 hasConceptScore W4200117360C41008148 @default.
- W4200117360 hasConceptScore W4200117360C99498987 @default.
- W4200117360 hasLocation W42001173601 @default.
- W4200117360 hasLocation W42001173602 @default.
- W4200117360 hasOpenAccess W4200117360 @default.
- W4200117360 hasPrimaryLocation W42001173601 @default.
- W4200117360 hasRelatedWork W2889705046 @default.
- W4200117360 hasRelatedWork W2946016983 @default.
- W4200117360 hasRelatedWork W2960456850 @default.
- W4200117360 hasRelatedWork W3192840557 @default.
- W4200117360 hasRelatedWork W4223943233 @default.
- W4200117360 hasRelatedWork W4312200629 @default.
- W4200117360 hasRelatedWork W4317565044 @default.
- W4200117360 hasRelatedWork W4360585206 @default.
- W4200117360 hasRelatedWork W4380075502 @default.
- W4200117360 hasRelatedWork W4382286161 @default.
- W4200117360 hasVolume "2021" @default.
- W4200117360 isParatext "false" @default.
- W4200117360 isRetracted "false" @default.
- W4200117360 workType "article" @default.