Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200119567> ?p ?o ?g. }
- W4200119567 endingPage "4473" @default.
- W4200119567 startingPage "4462" @default.
- W4200119567 abstract "Biological energy conversion is catalyzed by membrane-bound proteins that transduce chemical or light energy into energy forms that power endergonic processes in the cell. At a molecular level, these catalytic processes involve elementary electron-, proton-, charge-, and energy-transfer reactions that take place in the intricate molecular machineries of cell respiration and photosynthesis. Recent developments in structural biology, particularly cryo-electron microscopy (cryoEM), have resolved the molecular architecture of several energy transducing proteins, but detailed mechanistic principles of their charge transfer reactions still remain poorly understood and a major challenge for modern biochemical research. To this end, multiscale molecular simulations provide a powerful approach to probe mechanistic principles on a broad range of time scales (femtoseconds to milliseconds) and spatial resolutions (101-106 atoms), although technical challenges also require balancing between the computational accuracy, cost, and approximations introduced within the model. Here we discuss how the combination of atomistic (aMD) and hybrid quantum/classical molecular dynamics (QM/MM MD) simulations with free energy (FE) sampling methods can be used to probe mechanistic principles of enzymes responsible for biological energy conversion. We present mechanistic explorations of long-range proton-coupled electron transfer (PCET) dynamics in the highly intricate respiratory chain enzyme Complex I, which functions as a redox-driven proton pump in bacterial and mitochondrial respiratory chains by catalyzing a 300 Å fully reversible PCET process. This process is initiated by a hydride (H-) transfer between NADH and FMN, followed by long-range (>100 Å) electron transfer along a wire of 8 FeS centers leading to a quinone biding site. The reduction of the quinone to quinol initiates dissociation of the latter to a second membrane-bound binding site, and triggers proton pumping across the membrane domain of complex I, in subunits up to 200 Å away from the active site. Our simulations across different size and time scales suggest that transient charge transfer reactions lead to changes in the internal hydration state of key regions, local electric fields, and the conformation of conserved ion pairs, which in turn modulate the dynamics of functional steps along the reaction cycle. Similar functional principles, which operate on much shorter length scales, are also found in some unrelated proteins, suggesting that enzymes may employ conserved principles in the catalysis of biological energy transduction processes." @default.
- W4200119567 created "2021-12-31" @default.
- W4200119567 creator A5063740635 @default.
- W4200119567 date "2021-12-13" @default.
- W4200119567 modified "2023-09-26" @default.
- W4200119567 title "Resolving Chemical Dynamics in Biological Energy Conversion: Long-Range Proton-Coupled Electron Transfer in Respiratory Complex I" @default.
- W4200119567 cites W1964126982 @default.
- W4200119567 cites W1966633283 @default.
- W4200119567 cites W1991716344 @default.
- W4200119567 cites W1993177346 @default.
- W4200119567 cites W1998299443 @default.
- W4200119567 cites W2008735595 @default.
- W4200119567 cites W2014042350 @default.
- W4200119567 cites W2018674598 @default.
- W4200119567 cites W2028327823 @default.
- W4200119567 cites W2032427406 @default.
- W4200119567 cites W2035127779 @default.
- W4200119567 cites W2052337347 @default.
- W4200119567 cites W2065189961 @default.
- W4200119567 cites W2071040663 @default.
- W4200119567 cites W2072468568 @default.
- W4200119567 cites W2076047438 @default.
- W4200119567 cites W2086786922 @default.
- W4200119567 cites W2088537888 @default.
- W4200119567 cites W2110872379 @default.
- W4200119567 cites W2112154906 @default.
- W4200119567 cites W2119707316 @default.
- W4200119567 cites W2121371032 @default.
- W4200119567 cites W2137022116 @default.
- W4200119567 cites W2141012606 @default.
- W4200119567 cites W2148987532 @default.
- W4200119567 cites W2165012926 @default.
- W4200119567 cites W2288739910 @default.
- W4200119567 cites W2329555286 @default.
- W4200119567 cites W2344199141 @default.
- W4200119567 cites W2346383640 @default.
- W4200119567 cites W2414204465 @default.
- W4200119567 cites W2595110778 @default.
- W4200119567 cites W2613860781 @default.
- W4200119567 cites W2734702700 @default.
- W4200119567 cites W2742198616 @default.
- W4200119567 cites W2763734326 @default.
- W4200119567 cites W2770778494 @default.
- W4200119567 cites W2791922616 @default.
- W4200119567 cites W2797360787 @default.
- W4200119567 cites W2797834103 @default.
- W4200119567 cites W2806917274 @default.
- W4200119567 cites W2885026200 @default.
- W4200119567 cites W2922073842 @default.
- W4200119567 cites W2924310031 @default.
- W4200119567 cites W2944535036 @default.
- W4200119567 cites W2953100843 @default.
- W4200119567 cites W2954088480 @default.
- W4200119567 cites W2967597348 @default.
- W4200119567 cites W3001047937 @default.
- W4200119567 cites W3005977243 @default.
- W4200119567 cites W3006090576 @default.
- W4200119567 cites W3012254059 @default.
- W4200119567 cites W3018314267 @default.
- W4200119567 cites W3022892261 @default.
- W4200119567 cites W3026447868 @default.
- W4200119567 cites W3041931458 @default.
- W4200119567 cites W3047248739 @default.
- W4200119567 cites W3088651085 @default.
- W4200119567 cites W3092856399 @default.
- W4200119567 cites W3112512981 @default.
- W4200119567 cites W3119136244 @default.
- W4200119567 cites W3137387231 @default.
- W4200119567 cites W3138190344 @default.
- W4200119567 cites W3148042916 @default.
- W4200119567 cites W3157748334 @default.
- W4200119567 cites W3158685666 @default.
- W4200119567 cites W3159767510 @default.
- W4200119567 cites W3182199177 @default.
- W4200119567 cites W4232566847 @default.
- W4200119567 doi "https://doi.org/10.1021/acs.accounts.1c00524" @default.
- W4200119567 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34894649" @default.
- W4200119567 hasPublicationYear "2021" @default.
- W4200119567 type Work @default.
- W4200119567 citedByCount "14" @default.
- W4200119567 countsByYear W42001195672022 @default.
- W4200119567 countsByYear W42001195672023 @default.
- W4200119567 crossrefType "journal-article" @default.
- W4200119567 hasAuthorship W4200119567A5063740635 @default.
- W4200119567 hasBestOaLocation W42001195671 @default.
- W4200119567 hasConcept C110010208 @default.
- W4200119567 hasConcept C121332964 @default.
- W4200119567 hasConcept C123669783 @default.
- W4200119567 hasConcept C144822601 @default.
- W4200119567 hasConcept C147597530 @default.
- W4200119567 hasConcept C159467904 @default.
- W4200119567 hasConcept C161790260 @default.
- W4200119567 hasConcept C171250308 @default.
- W4200119567 hasConcept C178790620 @default.
- W4200119567 hasConcept C185592680 @default.
- W4200119567 hasConcept C192562407 @default.
- W4200119567 hasConcept C22547674 @default.
- W4200119567 hasConcept C24840226 @default.