Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200124706> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4200124706 endingPage "12" @default.
- W4200124706 startingPage "1" @default.
- W4200124706 abstract "In this paper, the technique of image recognition algorithm is used to conduct an in-depth study and analysis of the intelligent classification and recycling system of solid waste and to optimize the design of its system. The network structure and detection principle of the YOLO target detection algorithm based on convolutional neural nets are analysed, images of construction solid waste are collected as a dataset, and the image dataset is expanded using data enhancement techniques, and the target objects in the dataset are labelled and used to train their own YOLO detection models. To facilitate testing the images and to design a YOLO algorithm-based construction solid waste target detection system. Using the detection system for construction solid waste recognition, the YOLO model can accurately detect the location, class, and confidential information of the target object in the image. Image recognition is a technique to recognize images by capturing real-life images through devices and performing feature extraction, and this technique has been widely used since its inception. The deep learning-based classification algorithm for recyclable solid waste studied in this paper can classify solid waste efficiently and accurately, solving the problem that people do not know how to classify solid waste in daily life. The convolutional layer, pooling layer, and fully connected layer in a convolutional neural network are responsible for feature extraction, reducing the number of parameters, integrating features into high-level features, and finally classifying them by SoftMax classifier in turn. However, the actual situation is intricate and often the result is not obtained as envisioned, and the use of migration learning can be a good way to improve the overfitting phenomenon. In this paper, the combination of lazy optimizer and lookahead can improve the generalization ability and fitting speed as well as greatly improve the accuracy and stability. The experimental results are tested, and it is found that the solid waste classification accuracy can be as high as 95% when the VGG19 model is selected and the optimizer is combined." @default.
- W4200124706 created "2021-12-31" @default.
- W4200124706 creator A5065987453 @default.
- W4200124706 date "2021-12-03" @default.
- W4200124706 modified "2023-09-23" @default.
- W4200124706 title "Optimization of an Intelligent Sorting and Recycling System for Solid Waste Based on Image Recognition Technology" @default.
- W4200124706 cites W2604363612 @default.
- W4200124706 cites W2784889867 @default.
- W4200124706 cites W2807072073 @default.
- W4200124706 cites W2903459462 @default.
- W4200124706 cites W2917508077 @default.
- W4200124706 cites W2930390824 @default.
- W4200124706 cites W2938804800 @default.
- W4200124706 cites W2942855932 @default.
- W4200124706 cites W2977997344 @default.
- W4200124706 cites W3003632438 @default.
- W4200124706 cites W3036645276 @default.
- W4200124706 cites W3096990572 @default.
- W4200124706 cites W3122462709 @default.
- W4200124706 cites W3122915052 @default.
- W4200124706 cites W3135029437 @default.
- W4200124706 cites W3137227275 @default.
- W4200124706 cites W3177059230 @default.
- W4200124706 cites W3184496932 @default.
- W4200124706 doi "https://doi.org/10.1155/2021/4094684" @default.
- W4200124706 hasPublicationYear "2021" @default.
- W4200124706 type Work @default.
- W4200124706 citedByCount "1" @default.
- W4200124706 countsByYear W42001247062022 @default.
- W4200124706 crossrefType "journal-article" @default.
- W4200124706 hasAuthorship W4200124706A5065987453 @default.
- W4200124706 hasBestOaLocation W42001247061 @default.
- W4200124706 hasConcept C115961682 @default.
- W4200124706 hasConcept C127413603 @default.
- W4200124706 hasConcept C138885662 @default.
- W4200124706 hasConcept C153180895 @default.
- W4200124706 hasConcept C154945302 @default.
- W4200124706 hasConcept C188441871 @default.
- W4200124706 hasConcept C2776151529 @default.
- W4200124706 hasConcept C2776401178 @default.
- W4200124706 hasConcept C31972630 @default.
- W4200124706 hasConcept C41008148 @default.
- W4200124706 hasConcept C41895202 @default.
- W4200124706 hasConcept C52622490 @default.
- W4200124706 hasConcept C548081761 @default.
- W4200124706 hasConcept C75294576 @default.
- W4200124706 hasConcept C75779659 @default.
- W4200124706 hasConcept C81363708 @default.
- W4200124706 hasConcept C95623464 @default.
- W4200124706 hasConceptScore W4200124706C115961682 @default.
- W4200124706 hasConceptScore W4200124706C127413603 @default.
- W4200124706 hasConceptScore W4200124706C138885662 @default.
- W4200124706 hasConceptScore W4200124706C153180895 @default.
- W4200124706 hasConceptScore W4200124706C154945302 @default.
- W4200124706 hasConceptScore W4200124706C188441871 @default.
- W4200124706 hasConceptScore W4200124706C2776151529 @default.
- W4200124706 hasConceptScore W4200124706C2776401178 @default.
- W4200124706 hasConceptScore W4200124706C31972630 @default.
- W4200124706 hasConceptScore W4200124706C41008148 @default.
- W4200124706 hasConceptScore W4200124706C41895202 @default.
- W4200124706 hasConceptScore W4200124706C52622490 @default.
- W4200124706 hasConceptScore W4200124706C548081761 @default.
- W4200124706 hasConceptScore W4200124706C75294576 @default.
- W4200124706 hasConceptScore W4200124706C75779659 @default.
- W4200124706 hasConceptScore W4200124706C81363708 @default.
- W4200124706 hasConceptScore W4200124706C95623464 @default.
- W4200124706 hasLocation W42001247061 @default.
- W4200124706 hasLocation W42001247062 @default.
- W4200124706 hasOpenAccess W4200124706 @default.
- W4200124706 hasPrimaryLocation W42001247061 @default.
- W4200124706 hasRelatedWork W2059299633 @default.
- W4200124706 hasRelatedWork W2732542196 @default.
- W4200124706 hasRelatedWork W2760085659 @default.
- W4200124706 hasRelatedWork W2807311372 @default.
- W4200124706 hasRelatedWork W2940977206 @default.
- W4200124706 hasRelatedWork W2964383635 @default.
- W4200124706 hasRelatedWork W2977314777 @default.
- W4200124706 hasRelatedWork W2995914718 @default.
- W4200124706 hasRelatedWork W3156786002 @default.
- W4200124706 hasRelatedWork W4281716632 @default.
- W4200124706 hasVolume "2021" @default.
- W4200124706 isParatext "false" @default.
- W4200124706 isRetracted "false" @default.
- W4200124706 workType "article" @default.