Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200125441> ?p ?o ?g. }
- W4200125441 endingPage "2101652" @default.
- W4200125441 startingPage "2101652" @default.
- W4200125441 abstract "Chronic lung allograft dysfunction (CLAD) is the principal cause of graft failure in lung transplant recipients and prognosis depends on CLAD phenotype. We used a machine learning computed tomography (CT) lung texture analysis tool at CLAD diagnosis for phenotyping and prognostication compared with radiologist scoring.This retrospective study included all adult first double lung transplant patients (January 2010-December 2015) with CLAD (censored December 2019) and inspiratory CT near CLAD diagnosis. The machine learning tool quantified ground-glass opacity, reticulation, hyperlucent lung and pulmonary vessel volume (PVV). Two radiologists scored for ground-glass opacity, reticulation, consolidation, pleural effusion, air trapping and bronchiectasis. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance of machine learning and radiologist for CLAD phenotype. Multivariable Cox proportional hazards regression analysis for allograft survival controlled for age, sex, native lung disease, cytomegalovirus serostatus and CLAD phenotype.88 patients were included (57 bronchiolitis obliterans syndrome (BOS), 20 restrictive allograft syndrome (RAS)/mixed and 11 unclassified/undefined) with CT a median 9.5 days from CLAD onset. Radiologist and machine learning parameters phenotyped RAS/mixed with PVV as the strongest indicator (area under the curve (AUC) 0.85). Machine learning hyperlucent lung phenotyped BOS using only inspiratory CT (AUC 0.76). Radiologist and machine learning parameters predicted graft failure in the multivariable analysis, best with PVV (hazard ratio 1.23, 95% CI 1.05-1.44; p=0.01).Machine learning discriminated between CLAD phenotypes on CT. Both radiologist and machine learning scoring were associated with graft failure, independent of CLAD phenotype. PVV, unique to machine learning, was the strongest in phenotyping and prognostication." @default.
- W4200125441 created "2021-12-31" @default.
- W4200125441 creator A5000666528 @default.
- W4200125441 creator A5012101327 @default.
- W4200125441 creator A5015263586 @default.
- W4200125441 creator A5016620541 @default.
- W4200125441 creator A5017163508 @default.
- W4200125441 creator A5020400867 @default.
- W4200125441 creator A5026018674 @default.
- W4200125441 creator A5038824361 @default.
- W4200125441 creator A5039388900 @default.
- W4200125441 creator A5057493219 @default.
- W4200125441 creator A5063479629 @default.
- W4200125441 date "2021-12-23" @default.
- W4200125441 modified "2023-10-07" @default.
- W4200125441 title "Chronic lung allograft dysfunction phenotype and prognosis by machine learning CT analysis" @default.
- W4200125441 cites W1460956226 @default.
- W4200125441 cites W1965612776 @default.
- W4200125441 cites W1978081401 @default.
- W4200125441 cites W1998403263 @default.
- W4200125441 cites W2102601462 @default.
- W4200125441 cites W2102634410 @default.
- W4200125441 cites W2155777150 @default.
- W4200125441 cites W2157308701 @default.
- W4200125441 cites W2403838786 @default.
- W4200125441 cites W2418811070 @default.
- W4200125441 cites W2463524821 @default.
- W4200125441 cites W2534071065 @default.
- W4200125441 cites W2548055772 @default.
- W4200125441 cites W2555672038 @default.
- W4200125441 cites W2626738378 @default.
- W4200125441 cites W2756466752 @default.
- W4200125441 cites W2784210967 @default.
- W4200125441 cites W2789565895 @default.
- W4200125441 cites W2796621971 @default.
- W4200125441 cites W2803179367 @default.
- W4200125441 cites W2902933359 @default.
- W4200125441 cites W2933321059 @default.
- W4200125441 cites W2964110549 @default.
- W4200125441 cites W2967129829 @default.
- W4200125441 cites W2989620281 @default.
- W4200125441 cites W3024562920 @default.
- W4200125441 cites W3118918458 @default.
- W4200125441 doi "https://doi.org/10.1183/13993003.01652-2021" @default.
- W4200125441 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34949699" @default.
- W4200125441 hasPublicationYear "2021" @default.
- W4200125441 type Work @default.
- W4200125441 citedByCount "4" @default.
- W4200125441 countsByYear W42001254412022 @default.
- W4200125441 countsByYear W42001254412023 @default.
- W4200125441 crossrefType "journal-article" @default.
- W4200125441 hasAuthorship W4200125441A5000666528 @default.
- W4200125441 hasAuthorship W4200125441A5012101327 @default.
- W4200125441 hasAuthorship W4200125441A5015263586 @default.
- W4200125441 hasAuthorship W4200125441A5016620541 @default.
- W4200125441 hasAuthorship W4200125441A5017163508 @default.
- W4200125441 hasAuthorship W4200125441A5020400867 @default.
- W4200125441 hasAuthorship W4200125441A5026018674 @default.
- W4200125441 hasAuthorship W4200125441A5038824361 @default.
- W4200125441 hasAuthorship W4200125441A5039388900 @default.
- W4200125441 hasAuthorship W4200125441A5057493219 @default.
- W4200125441 hasAuthorship W4200125441A5063479629 @default.
- W4200125441 hasBestOaLocation W42001254411 @default.
- W4200125441 hasConcept C126322002 @default.
- W4200125441 hasConcept C126838900 @default.
- W4200125441 hasConcept C207103383 @default.
- W4200125441 hasConcept C2776739411 @default.
- W4200125441 hasConcept C2777714996 @default.
- W4200125441 hasConcept C2779634585 @default.
- W4200125441 hasConcept C2781448352 @default.
- W4200125441 hasConcept C44249647 @default.
- W4200125441 hasConcept C58471807 @default.
- W4200125441 hasConcept C71924100 @default.
- W4200125441 hasConceptScore W4200125441C126322002 @default.
- W4200125441 hasConceptScore W4200125441C126838900 @default.
- W4200125441 hasConceptScore W4200125441C207103383 @default.
- W4200125441 hasConceptScore W4200125441C2776739411 @default.
- W4200125441 hasConceptScore W4200125441C2777714996 @default.
- W4200125441 hasConceptScore W4200125441C2779634585 @default.
- W4200125441 hasConceptScore W4200125441C2781448352 @default.
- W4200125441 hasConceptScore W4200125441C44249647 @default.
- W4200125441 hasConceptScore W4200125441C58471807 @default.
- W4200125441 hasConceptScore W4200125441C71924100 @default.
- W4200125441 hasIssue "1" @default.
- W4200125441 hasLocation W42001254411 @default.
- W4200125441 hasLocation W42001254412 @default.
- W4200125441 hasOpenAccess W4200125441 @default.
- W4200125441 hasPrimaryLocation W42001254411 @default.
- W4200125441 hasRelatedWork W162331040 @default.
- W4200125441 hasRelatedWork W1997430425 @default.
- W4200125441 hasRelatedWork W2031426915 @default.
- W4200125441 hasRelatedWork W2036915786 @default.
- W4200125441 hasRelatedWork W2042577913 @default.
- W4200125441 hasRelatedWork W2051784945 @default.
- W4200125441 hasRelatedWork W2067334819 @default.
- W4200125441 hasRelatedWork W2118384216 @default.
- W4200125441 hasRelatedWork W2417260214 @default.
- W4200125441 hasRelatedWork W2774903098 @default.