Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200126377> ?p ?o ?g. }
- W4200126377 endingPage "573" @default.
- W4200126377 startingPage "553" @default.
- W4200126377 abstract "Cooling accounts for a significant amount of energy consumption in hot and humid climates, and district cooling is an energy-efficient solution. During its planning stage, an accurate and fast prediction of district cooling loads is required to assist decision-making. This study investigated the development of machine-learning-based meta-models to predict the cooling load of high-rise residential buildings at a district scale. Four machine-learning models have been evaluated, including Multiple Linear Regression, Support Vector Regression, Artificial Neural Networks (ANN), and eXtreme Gradient Boosting. The meta-model development starts with the sensitivity analysis to determine the critical parameters as independent variables. The results show that the ANN model with 30 neurons of the hidden layer, trained by eight epochs with 20% sample data, manifested superior performance when predicting monthly energy use intensity for the testing cases. A minimum of eight independent variables for the meta-model was also shown to be acceptable." @default.
- W4200126377 created "2021-12-31" @default.
- W4200126377 creator A5037210729 @default.
- W4200126377 creator A5068791508 @default.
- W4200126377 creator A5071239107 @default.
- W4200126377 creator A5087464086 @default.
- W4200126377 creator A5088560193 @default.
- W4200126377 date "2021-12-22" @default.
- W4200126377 modified "2023-09-27" @default.
- W4200126377 title "Developing machine-learning meta-models for high-rise residential district cooling in hot and humid climate" @default.
- W4200126377 cites W150074832 @default.
- W4200126377 cites W1602081603 @default.
- W4200126377 cites W1965345917 @default.
- W4200126377 cites W1982968913 @default.
- W4200126377 cites W1997334587 @default.
- W4200126377 cites W1997986440 @default.
- W4200126377 cites W2000368369 @default.
- W4200126377 cites W2008784425 @default.
- W4200126377 cites W2045966225 @default.
- W4200126377 cites W2060849819 @default.
- W4200126377 cites W2065684167 @default.
- W4200126377 cites W2089592105 @default.
- W4200126377 cites W2093698402 @default.
- W4200126377 cites W2106857564 @default.
- W4200126377 cites W2108152153 @default.
- W4200126377 cites W2244501064 @default.
- W4200126377 cites W2321278764 @default.
- W4200126377 cites W2345130294 @default.
- W4200126377 cites W2515646722 @default.
- W4200126377 cites W2564020334 @default.
- W4200126377 cites W2586259521 @default.
- W4200126377 cites W2605391457 @default.
- W4200126377 cites W2750869373 @default.
- W4200126377 cites W2753832408 @default.
- W4200126377 cites W2754029504 @default.
- W4200126377 cites W2761875693 @default.
- W4200126377 cites W2764162755 @default.
- W4200126377 cites W2773309836 @default.
- W4200126377 cites W2806066720 @default.
- W4200126377 cites W2884490557 @default.
- W4200126377 cites W2889518720 @default.
- W4200126377 cites W2895889688 @default.
- W4200126377 cites W2916504680 @default.
- W4200126377 cites W2936343203 @default.
- W4200126377 cites W2946736456 @default.
- W4200126377 cites W2952133925 @default.
- W4200126377 cites W2966793957 @default.
- W4200126377 cites W2985763515 @default.
- W4200126377 cites W2993745328 @default.
- W4200126377 cites W3011463854 @default.
- W4200126377 cites W3021900882 @default.
- W4200126377 cites W3047142640 @default.
- W4200126377 cites W3082122398 @default.
- W4200126377 cites W3082558305 @default.
- W4200126377 cites W3121926635 @default.
- W4200126377 cites W3122220845 @default.
- W4200126377 cites W4235704752 @default.
- W4200126377 doi "https://doi.org/10.1080/19401493.2021.2001573" @default.
- W4200126377 hasPublicationYear "2021" @default.
- W4200126377 type Work @default.
- W4200126377 citedByCount "4" @default.
- W4200126377 countsByYear W42001263772022 @default.
- W4200126377 countsByYear W42001263772023 @default.
- W4200126377 crossrefType "journal-article" @default.
- W4200126377 hasAuthorship W4200126377A5037210729 @default.
- W4200126377 hasAuthorship W4200126377A5068791508 @default.
- W4200126377 hasAuthorship W4200126377A5071239107 @default.
- W4200126377 hasAuthorship W4200126377A5087464086 @default.
- W4200126377 hasAuthorship W4200126377A5088560193 @default.
- W4200126377 hasConcept C103742991 @default.
- W4200126377 hasConcept C119857082 @default.
- W4200126377 hasConcept C12267149 @default.
- W4200126377 hasConcept C127413603 @default.
- W4200126377 hasConcept C154945302 @default.
- W4200126377 hasConcept C169258074 @default.
- W4200126377 hasConcept C199360897 @default.
- W4200126377 hasConcept C2781099182 @default.
- W4200126377 hasConcept C41008148 @default.
- W4200126377 hasConcept C48921125 @default.
- W4200126377 hasConcept C50644808 @default.
- W4200126377 hasConcept C70153297 @default.
- W4200126377 hasConcept C78519656 @default.
- W4200126377 hasConcept C86610423 @default.
- W4200126377 hasConceptScore W4200126377C103742991 @default.
- W4200126377 hasConceptScore W4200126377C119857082 @default.
- W4200126377 hasConceptScore W4200126377C12267149 @default.
- W4200126377 hasConceptScore W4200126377C127413603 @default.
- W4200126377 hasConceptScore W4200126377C154945302 @default.
- W4200126377 hasConceptScore W4200126377C169258074 @default.
- W4200126377 hasConceptScore W4200126377C199360897 @default.
- W4200126377 hasConceptScore W4200126377C2781099182 @default.
- W4200126377 hasConceptScore W4200126377C41008148 @default.
- W4200126377 hasConceptScore W4200126377C48921125 @default.
- W4200126377 hasConceptScore W4200126377C50644808 @default.
- W4200126377 hasConceptScore W4200126377C70153297 @default.
- W4200126377 hasConceptScore W4200126377C78519656 @default.
- W4200126377 hasConceptScore W4200126377C86610423 @default.
- W4200126377 hasFunder F4320332753 @default.