Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200127987> ?p ?o ?g. }
- W4200127987 endingPage "104999" @default.
- W4200127987 startingPage "104999" @default.
- W4200127987 abstract "Mechanical characterisation of soft viscous materials is essential for many applications including aerospace industries, material models for surgical simulation, and tissue mimicking materials for anatomical models. Constitutive material models are, therefore, necessary to describe soft biological tissues in physiologically relevant strain ranges. Hereby, the adaptive quasi-linear viscoelastic (AQLV) model enables accurate modelling of the strain-dependent non-linear viscoelastic behaviour of soft tissues with a high flexibility. However, the higher flexibility produces a large number of model parameters. In this study, porcine muscle and liver tissue samples were modelled in the framework of the originally published AQLV (3-layers of Maxwell elements) model using four incremental ramp-hold experiments in uniaxial tension. AQLV model parameters were reduced by decreasing model layers (M) as well as the number of experimental ramp-hold steps (N). Leave One out cross validation tests show that the original AQLV model (3M4N) with 19 parameters, accurately describes porcine muscle tissue with an average R2 of 0.90 and porcine liver tissue, R2 of 0.86. Reducing the number of layers (N) in the model produced acceptable model fits for 1-layer (R2 of 0.83) and 2-layer models (R2 of 0.89) for porcine muscle tissue and 1-layer (R2 of 0.84) and 2-layer model (R2 of 0.85) for porcine liver tissue. Additionally, a 2 step (2N) ramp-hold experiment was performed on additional samples of porcine muscle tissue only to further reduce model parameters. Calibrated spring constant values for 2N ramp-hold tests parameters k1 and k2 had a 16.8% and 38.0% deviation from those calibrated for a 4 step (4N) ramp hold experiment. This enables further reduction of material parameters by means of step reduction, effectively reducing the number of parameters required to calibrate the AQLV model from 19 for a 3M4N model to 8 for a 2M2N model, with the added advantage of reducing the time per experiment by 50%. This study proposes a 'reduced-parameter' AQLV model (2M2N) for the modelling of soft biological tissues at finite strain ranges. Sequentially, the comparison of model parameters of soft tissues is easier and the experimental burden is reduced." @default.
- W4200127987 created "2021-12-31" @default.
- W4200127987 creator A5008118766 @default.
- W4200127987 creator A5022562159 @default.
- W4200127987 creator A5036199140 @default.
- W4200127987 creator A5040691815 @default.
- W4200127987 creator A5044304481 @default.
- W4200127987 creator A5077499717 @default.
- W4200127987 date "2022-02-01" @default.
- W4200127987 modified "2023-10-01" @default.
- W4200127987 title "A parameter reduced adaptive quasi-linear viscoelastic model for soft biological tissue in uniaxial tension" @default.
- W4200127987 cites W1028954886 @default.
- W4200127987 cites W1605291470 @default.
- W4200127987 cites W1955568318 @default.
- W4200127987 cites W1965542445 @default.
- W4200127987 cites W1970219880 @default.
- W4200127987 cites W1972694197 @default.
- W4200127987 cites W1977698160 @default.
- W4200127987 cites W1987902045 @default.
- W4200127987 cites W2010413546 @default.
- W4200127987 cites W2011350718 @default.
- W4200127987 cites W2012404222 @default.
- W4200127987 cites W2020308291 @default.
- W4200127987 cites W2020817086 @default.
- W4200127987 cites W2024264687 @default.
- W4200127987 cites W2025595638 @default.
- W4200127987 cites W2034559234 @default.
- W4200127987 cites W2042770713 @default.
- W4200127987 cites W2044719288 @default.
- W4200127987 cites W2046004657 @default.
- W4200127987 cites W2052643092 @default.
- W4200127987 cites W2057378863 @default.
- W4200127987 cites W2072665320 @default.
- W4200127987 cites W2084992092 @default.
- W4200127987 cites W2085439985 @default.
- W4200127987 cites W2086510750 @default.
- W4200127987 cites W2090672581 @default.
- W4200127987 cites W2091869772 @default.
- W4200127987 cites W2093342285 @default.
- W4200127987 cites W2094863612 @default.
- W4200127987 cites W2095424147 @default.
- W4200127987 cites W2116795368 @default.
- W4200127987 cites W2121914249 @default.
- W4200127987 cites W2160315983 @default.
- W4200127987 cites W2160606841 @default.
- W4200127987 cites W2161422731 @default.
- W4200127987 cites W2163920091 @default.
- W4200127987 cites W2190013382 @default.
- W4200127987 cites W2253077586 @default.
- W4200127987 cites W2418772767 @default.
- W4200127987 cites W2593740600 @default.
- W4200127987 cites W2761805300 @default.
- W4200127987 cites W2773894448 @default.
- W4200127987 cites W2781816106 @default.
- W4200127987 cites W2794536831 @default.
- W4200127987 cites W2805131445 @default.
- W4200127987 cites W2887366599 @default.
- W4200127987 cites W2887566440 @default.
- W4200127987 cites W2892160908 @default.
- W4200127987 cites W2898464786 @default.
- W4200127987 cites W2963273989 @default.
- W4200127987 cites W2964278801 @default.
- W4200127987 cites W3000599182 @default.
- W4200127987 cites W3005375347 @default.
- W4200127987 cites W3080705052 @default.
- W4200127987 doi "https://doi.org/10.1016/j.jmbbm.2021.104999" @default.
- W4200127987 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34999491" @default.
- W4200127987 hasPublicationYear "2022" @default.
- W4200127987 type Work @default.
- W4200127987 citedByCount "5" @default.
- W4200127987 countsByYear W42001279872022 @default.
- W4200127987 countsByYear W42001279872023 @default.
- W4200127987 crossrefType "journal-article" @default.
- W4200127987 hasAuthorship W4200127987A5008118766 @default.
- W4200127987 hasAuthorship W4200127987A5022562159 @default.
- W4200127987 hasAuthorship W4200127987A5036199140 @default.
- W4200127987 hasAuthorship W4200127987A5040691815 @default.
- W4200127987 hasAuthorship W4200127987A5044304481 @default.
- W4200127987 hasAuthorship W4200127987A5077499717 @default.
- W4200127987 hasBestOaLocation W42001279871 @default.
- W4200127987 hasConcept C105702510 @default.
- W4200127987 hasConcept C105795698 @default.
- W4200127987 hasConcept C112950240 @default.
- W4200127987 hasConcept C121332964 @default.
- W4200127987 hasConcept C126322002 @default.
- W4200127987 hasConcept C127413603 @default.
- W4200127987 hasConcept C136229726 @default.
- W4200127987 hasConcept C136948725 @default.
- W4200127987 hasConcept C141071460 @default.
- W4200127987 hasConcept C159985019 @default.
- W4200127987 hasConcept C186060115 @default.
- W4200127987 hasConcept C186068551 @default.
- W4200127987 hasConcept C186541917 @default.
- W4200127987 hasConcept C192562407 @default.
- W4200127987 hasConcept C2778514504 @default.
- W4200127987 hasConcept C2780598303 @default.
- W4200127987 hasConcept C2992176824 @default.
- W4200127987 hasConcept C33923547 @default.