Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200133301> ?p ?o ?g. }
- W4200133301 endingPage "127354" @default.
- W4200133301 startingPage "127354" @default.
- W4200133301 abstract "In the context of global warming, permafrost degrades gradually. To cope with the instability of the cryosphere, it is very important to strengthen the monitoring of the seasonal freeze–thaw cycle. At present, active and passive microwave remote sensing data are widely used in freeze/thaw (F/T) onset detection. There is some potential to improve accuracy through the combination of active and passive microwave data. Compared with the traditional method for combination, the machine learning algorithm has a stronger nonlinear expression ability. Therefore, it is advisable to use machine learning to combine multi-source data for freeze/thaw onset detection. In this study, the temporal change detection method is applied to SMAP data and ASCAT data respectively for preliminary detection. Then the Random Forest algorithm (RF) is used to combine the preliminary results of active and passive microwave data with site observation to estimate the freeze/thaw onsets more accurately. The method is validated with data obtained in Alaska from 2015 to 2019. The accuracy evaluation shows that the proposed method can effectively improve the accuracy of freeze/thaw onset detection. The predicted distribution of the freeze/thaw cycle indicates that the variation of the freeze–thaw cycle is closely related to latitude. In general, the proposed method based on machine learning is promising in the research of freeze–thaw state monitoring." @default.
- W4200133301 created "2021-12-31" @default.
- W4200133301 creator A5037762930 @default.
- W4200133301 creator A5047576305 @default.
- W4200133301 creator A5076863688 @default.
- W4200133301 creator A5082328125 @default.
- W4200133301 date "2022-02-01" @default.
- W4200133301 modified "2023-10-12" @default.
- W4200133301 title "Freeze/thaw onset detection combining SMAP and ASCAT data over Alaska: A machine learning approach" @default.
- W4200133301 cites W1964461146 @default.
- W4200133301 cites W1970538633 @default.
- W4200133301 cites W1991893068 @default.
- W4200133301 cites W2002051499 @default.
- W4200133301 cites W2003707405 @default.
- W4200133301 cites W2008254587 @default.
- W4200133301 cites W2014511275 @default.
- W4200133301 cites W2029411945 @default.
- W4200133301 cites W2043735836 @default.
- W4200133301 cites W2044278456 @default.
- W4200133301 cites W2051598809 @default.
- W4200133301 cites W2055588961 @default.
- W4200133301 cites W2060051209 @default.
- W4200133301 cites W2070904642 @default.
- W4200133301 cites W2076986089 @default.
- W4200133301 cites W2080352380 @default.
- W4200133301 cites W2087873369 @default.
- W4200133301 cites W2092657652 @default.
- W4200133301 cites W2110322044 @default.
- W4200133301 cites W2145407597 @default.
- W4200133301 cites W2148401988 @default.
- W4200133301 cites W2149520898 @default.
- W4200133301 cites W2149723649 @default.
- W4200133301 cites W2158143121 @default.
- W4200133301 cites W2766249043 @default.
- W4200133301 cites W2795871639 @default.
- W4200133301 cites W2802689996 @default.
- W4200133301 cites W2888608859 @default.
- W4200133301 cites W2899356106 @default.
- W4200133301 cites W2901148959 @default.
- W4200133301 cites W2933039097 @default.
- W4200133301 cites W2943415823 @default.
- W4200133301 cites W2943601627 @default.
- W4200133301 cites W2969248122 @default.
- W4200133301 cites W2978747179 @default.
- W4200133301 cites W2982587391 @default.
- W4200133301 cites W2991588314 @default.
- W4200133301 cites W3003933125 @default.
- W4200133301 cites W3008439211 @default.
- W4200133301 cites W3009367059 @default.
- W4200133301 cites W3012304415 @default.
- W4200133301 cites W3015943914 @default.
- W4200133301 cites W3023031937 @default.
- W4200133301 cites W3111759001 @default.
- W4200133301 cites W3122817556 @default.
- W4200133301 cites W4214543178 @default.
- W4200133301 cites W4250533120 @default.
- W4200133301 doi "https://doi.org/10.1016/j.jhydrol.2021.127354" @default.
- W4200133301 hasPublicationYear "2022" @default.
- W4200133301 type Work @default.
- W4200133301 citedByCount "6" @default.
- W4200133301 countsByYear W42001333012022 @default.
- W4200133301 countsByYear W42001333012023 @default.
- W4200133301 crossrefType "journal-article" @default.
- W4200133301 hasAuthorship W4200133301A5037762930 @default.
- W4200133301 hasAuthorship W4200133301A5047576305 @default.
- W4200133301 hasAuthorship W4200133301A5076863688 @default.
- W4200133301 hasAuthorship W4200133301A5082328125 @default.
- W4200133301 hasBestOaLocation W42001333011 @default.
- W4200133301 hasConcept C111368507 @default.
- W4200133301 hasConcept C119857082 @default.
- W4200133301 hasConcept C12267149 @default.
- W4200133301 hasConcept C127313418 @default.
- W4200133301 hasConcept C15098985 @default.
- W4200133301 hasConcept C151730666 @default.
- W4200133301 hasConcept C154945302 @default.
- W4200133301 hasConcept C169258074 @default.
- W4200133301 hasConcept C2779343474 @default.
- W4200133301 hasConcept C39432304 @default.
- W4200133301 hasConcept C41008148 @default.
- W4200133301 hasConcept C62649853 @default.
- W4200133301 hasConceptScore W4200133301C111368507 @default.
- W4200133301 hasConceptScore W4200133301C119857082 @default.
- W4200133301 hasConceptScore W4200133301C12267149 @default.
- W4200133301 hasConceptScore W4200133301C127313418 @default.
- W4200133301 hasConceptScore W4200133301C15098985 @default.
- W4200133301 hasConceptScore W4200133301C151730666 @default.
- W4200133301 hasConceptScore W4200133301C154945302 @default.
- W4200133301 hasConceptScore W4200133301C169258074 @default.
- W4200133301 hasConceptScore W4200133301C2779343474 @default.
- W4200133301 hasConceptScore W4200133301C39432304 @default.
- W4200133301 hasConceptScore W4200133301C41008148 @default.
- W4200133301 hasConceptScore W4200133301C62649853 @default.
- W4200133301 hasFunder F4320321001 @default.
- W4200133301 hasFunder F4320321133 @default.
- W4200133301 hasLocation W42001333011 @default.
- W4200133301 hasOpenAccess W4200133301 @default.
- W4200133301 hasPrimaryLocation W42001333011 @default.
- W4200133301 hasRelatedWork W2979979539 @default.