Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200145141> ?p ?o ?g. }
- W4200145141 endingPage "104092" @default.
- W4200145141 startingPage "104092" @default.
- W4200145141 abstract "Although a scaffold is an essential structure in the construction industry, it may also be a dangerous factor that causes fatalities. However, the process of monitoring the scaffold is labor-intensive because it is conducted by the subjective observation of safety managers. To address this issue, we propose an automatic scaffold 3D reconstruction method using 3D point cloud data acquired using a robot dog. The method consists of three steps: 1) data acquisition of scaffold point clouds through a robot dog scanning system, 2) deep learning-based 3D semantic segmentation, and 3) automatic formation of a 3D CAD model. We created 15 robot dog datasets for training the segmentation model. The proposed method was tested at a different site where a scaffold with a representative structure was attached to the wall. The proposed method demonstrated an excellent performance of point cloud segmentation with a 90.84% F1 score." @default.
- W4200145141 created "2021-12-31" @default.
- W4200145141 creator A5008311951 @default.
- W4200145141 creator A5021691124 @default.
- W4200145141 creator A5028955636 @default.
- W4200145141 creator A5071371100 @default.
- W4200145141 date "2022-02-01" @default.
- W4200145141 modified "2023-10-16" @default.
- W4200145141 title "Deep learning-based 3D reconstruction of scaffolds using a robot dog" @default.
- W4200145141 cites W2131009518 @default.
- W4200145141 cites W2258476432 @default.
- W4200145141 cites W2295385469 @default.
- W4200145141 cites W2312372683 @default.
- W4200145141 cites W2516518124 @default.
- W4200145141 cites W2524405979 @default.
- W4200145141 cites W2739432504 @default.
- W4200145141 cites W2766293515 @default.
- W4200145141 cites W2782344141 @default.
- W4200145141 cites W2803600673 @default.
- W4200145141 cites W2900019775 @default.
- W4200145141 cites W2903207051 @default.
- W4200145141 cites W2913109850 @default.
- W4200145141 cites W2917081331 @default.
- W4200145141 cites W2924600332 @default.
- W4200145141 cites W2937584501 @default.
- W4200145141 cites W2945770468 @default.
- W4200145141 cites W2952534588 @default.
- W4200145141 cites W2952670776 @default.
- W4200145141 cites W2979750740 @default.
- W4200145141 cites W2994143978 @default.
- W4200145141 cites W2997732691 @default.
- W4200145141 cites W3000491742 @default.
- W4200145141 cites W3012190739 @default.
- W4200145141 cites W3022849266 @default.
- W4200145141 cites W3030136005 @default.
- W4200145141 cites W3039448353 @default.
- W4200145141 cites W3081741002 @default.
- W4200145141 cites W3109424835 @default.
- W4200145141 cites W3112944626 @default.
- W4200145141 cites W3121416920 @default.
- W4200145141 cites W3126266918 @default.
- W4200145141 cites W3126649058 @default.
- W4200145141 cites W3129799165 @default.
- W4200145141 cites W3131287729 @default.
- W4200145141 cites W3132189063 @default.
- W4200145141 cites W3154038916 @default.
- W4200145141 cites W3154718610 @default.
- W4200145141 cites W3192872449 @default.
- W4200145141 cites W3206068048 @default.
- W4200145141 doi "https://doi.org/10.1016/j.autcon.2021.104092" @default.
- W4200145141 hasPublicationYear "2022" @default.
- W4200145141 type Work @default.
- W4200145141 citedByCount "10" @default.
- W4200145141 countsByYear W42001451412022 @default.
- W4200145141 countsByYear W42001451412023 @default.
- W4200145141 crossrefType "journal-article" @default.
- W4200145141 hasAuthorship W4200145141A5008311951 @default.
- W4200145141 hasAuthorship W4200145141A5021691124 @default.
- W4200145141 hasAuthorship W4200145141A5028955636 @default.
- W4200145141 hasAuthorship W4200145141A5071371100 @default.
- W4200145141 hasConcept C108583219 @default.
- W4200145141 hasConcept C109950114 @default.
- W4200145141 hasConcept C111919701 @default.
- W4200145141 hasConcept C127413603 @default.
- W4200145141 hasConcept C131979681 @default.
- W4200145141 hasConcept C154945302 @default.
- W4200145141 hasConcept C194789388 @default.
- W4200145141 hasConcept C199639397 @default.
- W4200145141 hasConcept C2524010 @default.
- W4200145141 hasConcept C28719098 @default.
- W4200145141 hasConcept C3019007443 @default.
- W4200145141 hasConcept C31972630 @default.
- W4200145141 hasConcept C33923547 @default.
- W4200145141 hasConcept C41008148 @default.
- W4200145141 hasConcept C77088390 @default.
- W4200145141 hasConcept C89429830 @default.
- W4200145141 hasConcept C89600930 @default.
- W4200145141 hasConcept C90509273 @default.
- W4200145141 hasConcept C98045186 @default.
- W4200145141 hasConceptScore W4200145141C108583219 @default.
- W4200145141 hasConceptScore W4200145141C109950114 @default.
- W4200145141 hasConceptScore W4200145141C111919701 @default.
- W4200145141 hasConceptScore W4200145141C127413603 @default.
- W4200145141 hasConceptScore W4200145141C131979681 @default.
- W4200145141 hasConceptScore W4200145141C154945302 @default.
- W4200145141 hasConceptScore W4200145141C194789388 @default.
- W4200145141 hasConceptScore W4200145141C199639397 @default.
- W4200145141 hasConceptScore W4200145141C2524010 @default.
- W4200145141 hasConceptScore W4200145141C28719098 @default.
- W4200145141 hasConceptScore W4200145141C3019007443 @default.
- W4200145141 hasConceptScore W4200145141C31972630 @default.
- W4200145141 hasConceptScore W4200145141C33923547 @default.
- W4200145141 hasConceptScore W4200145141C41008148 @default.
- W4200145141 hasConceptScore W4200145141C77088390 @default.
- W4200145141 hasConceptScore W4200145141C89429830 @default.
- W4200145141 hasConceptScore W4200145141C89600930 @default.
- W4200145141 hasConceptScore W4200145141C90509273 @default.
- W4200145141 hasConceptScore W4200145141C98045186 @default.