Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200151330> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4200151330 abstract "Abstract This research aims to identify the best machine learning (ML) classification techniques for classifying the flow regimes in vertical gas-liquid two-phase flow. Two-phase flow regime identification is crucial for many operations in the oil and gas industry. Processes such as flow assurance, well control, and production rely heavily on accurate identification of flow regimes for their respective systems' smooth functioning. The primary motivation for the proposed ML classification algorithm selection processes was drilling and well control applications in Deepwater wells. The process started with vertical two-phase flow data collection from literature and two different flow loops. One, a 140 ft. tall vertical flow loop with a centralized inner metal pipe and a larger outer acrylic pipe. Second, an 18-ft long flow loop, also with a centralized, inner metal drill pipe. After extensive experimental and historical data collection, supervised and unsupervised ML classification models such as Multi-class Support vector machine (MCSVM), K-Nearest Neighbor Classifier (KNN), K-means clustering, and hierarchical clustering were fit on the datasets to separate the different flow regions. The next step was fine-tuning the models' parameters and kernels. The last step was to compare the different combinations of models and refining techniques for the best prediction accuracy and the least variance. Among the different models and combinations with refining techniques, the 5- fold cross-validated KNN algorithm, with 37 neighbors, gave the optimal solution with a 98% classification accuracy on the test data. The KNN model distinguished five major, distinct flow regions for the dataset and a few minor regions. These five regions were bubbly flow, slug flow, churn flow, annular flow, and intermittent flow. The KNN-generated flow regime maps matched well with those presented by Hasan and Kabir (2018). The MCSVM model produced visually similar flow maps to KNN but significantly underperformed them in prediction accuracy. The MCSVM training errors ranged between 50% - 60% at normal parameter values and costs but went up to 99% at abnormally high values. However, their prediction accuracy was below 50% even at these highly overfitted conditions. In unsupervised models, both clustering techniques pointed to an optimal cluster number between 10 and 15, consistent with the 14 we have in the dataset. Within the context of gas kicks and well control, a well-trained, reliable two-phase flow region classification algorithm offers many advantages. When trained with well-specific data, it can act as a black box for flow regime identification and subsequent well-control measure decisions for the well. Further advancements with more robust statistical training techniques can render these algorithms as a basis for well-control measures in drilling automation software. On a broader scale, these classification techniques have many applications in flow assurance, production, and any other area with gas-liquid two-phase flow." @default.
- W4200151330 created "2021-12-31" @default.
- W4200151330 creator A5000770309 @default.
- W4200151330 creator A5032807472 @default.
- W4200151330 creator A5041903933 @default.
- W4200151330 creator A5045167530 @default.
- W4200151330 creator A5051885416 @default.
- W4200151330 creator A5064529447 @default.
- W4200151330 creator A5075396881 @default.
- W4200151330 date "2021-12-09" @default.
- W4200151330 modified "2023-10-03" @default.
- W4200151330 title "Application of Machine Learning Classification Algorithms for Two-Phase Gas-Liquid Flow Regime Identification" @default.
- W4200151330 cites W1971281444 @default.
- W4200151330 cites W1975375657 @default.
- W4200151330 cites W1976883852 @default.
- W4200151330 cites W1982653560 @default.
- W4200151330 cites W1994483179 @default.
- W4200151330 cites W2004363204 @default.
- W4200151330 cites W2011230380 @default.
- W4200151330 cites W2012735095 @default.
- W4200151330 cites W2040877251 @default.
- W4200151330 cites W2049122463 @default.
- W4200151330 cites W2053005571 @default.
- W4200151330 cites W2066477610 @default.
- W4200151330 cites W2088417542 @default.
- W4200151330 cites W2093123783 @default.
- W4200151330 cites W2100537585 @default.
- W4200151330 cites W2618544313 @default.
- W4200151330 cites W2803556351 @default.
- W4200151330 cites W2898372799 @default.
- W4200151330 cites W2898807294 @default.
- W4200151330 cites W2969477929 @default.
- W4200151330 cites W3049349475 @default.
- W4200151330 cites W3086569303 @default.
- W4200151330 doi "https://doi.org/10.2118/208214-ms" @default.
- W4200151330 hasPublicationYear "2021" @default.
- W4200151330 type Work @default.
- W4200151330 citedByCount "4" @default.
- W4200151330 countsByYear W42001513302022 @default.
- W4200151330 countsByYear W42001513302023 @default.
- W4200151330 crossrefType "proceedings-article" @default.
- W4200151330 hasAuthorship W4200151330A5000770309 @default.
- W4200151330 hasAuthorship W4200151330A5032807472 @default.
- W4200151330 hasAuthorship W4200151330A5041903933 @default.
- W4200151330 hasAuthorship W4200151330A5045167530 @default.
- W4200151330 hasAuthorship W4200151330A5051885416 @default.
- W4200151330 hasAuthorship W4200151330A5064529447 @default.
- W4200151330 hasAuthorship W4200151330A5075396881 @default.
- W4200151330 hasConcept C11413529 @default.
- W4200151330 hasConcept C119857082 @default.
- W4200151330 hasConcept C12267149 @default.
- W4200151330 hasConcept C124101348 @default.
- W4200151330 hasConcept C144308804 @default.
- W4200151330 hasConcept C154945302 @default.
- W4200151330 hasConcept C178790620 @default.
- W4200151330 hasConcept C185592680 @default.
- W4200151330 hasConcept C2524010 @default.
- W4200151330 hasConcept C2777955874 @default.
- W4200151330 hasConcept C2781060337 @default.
- W4200151330 hasConcept C33923547 @default.
- W4200151330 hasConcept C38349280 @default.
- W4200151330 hasConcept C41008148 @default.
- W4200151330 hasConcept C73555534 @default.
- W4200151330 hasConceptScore W4200151330C11413529 @default.
- W4200151330 hasConceptScore W4200151330C119857082 @default.
- W4200151330 hasConceptScore W4200151330C12267149 @default.
- W4200151330 hasConceptScore W4200151330C124101348 @default.
- W4200151330 hasConceptScore W4200151330C144308804 @default.
- W4200151330 hasConceptScore W4200151330C154945302 @default.
- W4200151330 hasConceptScore W4200151330C178790620 @default.
- W4200151330 hasConceptScore W4200151330C185592680 @default.
- W4200151330 hasConceptScore W4200151330C2524010 @default.
- W4200151330 hasConceptScore W4200151330C2777955874 @default.
- W4200151330 hasConceptScore W4200151330C2781060337 @default.
- W4200151330 hasConceptScore W4200151330C33923547 @default.
- W4200151330 hasConceptScore W4200151330C38349280 @default.
- W4200151330 hasConceptScore W4200151330C41008148 @default.
- W4200151330 hasConceptScore W4200151330C73555534 @default.
- W4200151330 hasLocation W42001513301 @default.
- W4200151330 hasOpenAccess W4200151330 @default.
- W4200151330 hasPrimaryLocation W42001513301 @default.
- W4200151330 hasRelatedWork W1996541855 @default.
- W4200151330 hasRelatedWork W2098059857 @default.
- W4200151330 hasRelatedWork W2355927362 @default.
- W4200151330 hasRelatedWork W2391315556 @default.
- W4200151330 hasRelatedWork W2961085424 @default.
- W4200151330 hasRelatedWork W3195168932 @default.
- W4200151330 hasRelatedWork W4206175771 @default.
- W4200151330 hasRelatedWork W4306674287 @default.
- W4200151330 hasRelatedWork W4316658362 @default.
- W4200151330 hasRelatedWork W4224009465 @default.
- W4200151330 isParatext "false" @default.
- W4200151330 isRetracted "false" @default.
- W4200151330 workType "article" @default.