Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200158654> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4200158654 abstract "Sub-seasonal to seasonal ( <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$S$</tex> 2 <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$S$</tex> ) weather prediction refers to a prediction of environmental conditions made in the range of 2 weeks to 12 months. The <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$S$</tex> 2 <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$S$</tex> products are based on the output of global climate models, and can be developed further through various statistical downscaling approaches. The training of the statistical models requires relatively high computational resources due to the large size and dimension of Global Climate Model (GCM) output data. This research analyzes the use of several dimensionality reduction techniques that can be used to reduce the dimension of the GCM output data. The compared techniques are one-dimensional Principal Component Analysis (1D-PCA), one-dimensional wavelet decomposition (1D-WD) and two-dimensional wavelet decomposition (2D-WD). Backpropagation algorithm is utilized to train the neural network model using the dimension-reduced GCM data. Simulation results revealed that the 2D-WD model has a relatively consistent performance compared to the other models and has the lowest training time among others. This method has the potential to produce a prediction model with good accuracy and with reasonably low computational cost." @default.
- W4200158654 created "2021-12-31" @default.
- W4200158654 creator A5016989155 @default.
- W4200158654 creator A5034392649 @default.
- W4200158654 creator A5054722232 @default.
- W4200158654 creator A5079726135 @default.
- W4200158654 date "2021-10-20" @default.
- W4200158654 modified "2023-09-27" @default.
- W4200158654 title "Analysis on Dimensionality Reduction Techniques for Sub-Seasonal to Seasonal Rainfall Prediction" @default.
- W4200158654 cites W1714695033 @default.
- W4200158654 cites W2073633517 @default.
- W4200158654 cites W2213075807 @default.
- W4200158654 cites W2471266319 @default.
- W4200158654 cites W2750407076 @default.
- W4200158654 cites W2766099863 @default.
- W4200158654 cites W2776712276 @default.
- W4200158654 cites W2789274210 @default.
- W4200158654 cites W2945966780 @default.
- W4200158654 cites W2972828012 @default.
- W4200158654 cites W3114463347 @default.
- W4200158654 doi "https://doi.org/10.1109/cosite52651.2021.9649588" @default.
- W4200158654 hasPublicationYear "2021" @default.
- W4200158654 type Work @default.
- W4200158654 citedByCount "0" @default.
- W4200158654 crossrefType "proceedings-article" @default.
- W4200158654 hasAuthorship W4200158654A5016989155 @default.
- W4200158654 hasAuthorship W4200158654A5034392649 @default.
- W4200158654 hasAuthorship W4200158654A5054722232 @default.
- W4200158654 hasAuthorship W4200158654A5079726135 @default.
- W4200158654 hasConcept C107054158 @default.
- W4200158654 hasConcept C111030470 @default.
- W4200158654 hasConcept C132651083 @default.
- W4200158654 hasConcept C141452985 @default.
- W4200158654 hasConcept C143742823 @default.
- W4200158654 hasConcept C153294291 @default.
- W4200158654 hasConcept C154945302 @default.
- W4200158654 hasConcept C18903297 @default.
- W4200158654 hasConcept C202444582 @default.
- W4200158654 hasConcept C205649164 @default.
- W4200158654 hasConcept C27438332 @default.
- W4200158654 hasConcept C33676613 @default.
- W4200158654 hasConcept C33923547 @default.
- W4200158654 hasConcept C41008148 @default.
- W4200158654 hasConcept C41156917 @default.
- W4200158654 hasConcept C50644808 @default.
- W4200158654 hasConcept C70518039 @default.
- W4200158654 hasConcept C86803240 @default.
- W4200158654 hasConceptScore W4200158654C107054158 @default.
- W4200158654 hasConceptScore W4200158654C111030470 @default.
- W4200158654 hasConceptScore W4200158654C132651083 @default.
- W4200158654 hasConceptScore W4200158654C141452985 @default.
- W4200158654 hasConceptScore W4200158654C143742823 @default.
- W4200158654 hasConceptScore W4200158654C153294291 @default.
- W4200158654 hasConceptScore W4200158654C154945302 @default.
- W4200158654 hasConceptScore W4200158654C18903297 @default.
- W4200158654 hasConceptScore W4200158654C202444582 @default.
- W4200158654 hasConceptScore W4200158654C205649164 @default.
- W4200158654 hasConceptScore W4200158654C27438332 @default.
- W4200158654 hasConceptScore W4200158654C33676613 @default.
- W4200158654 hasConceptScore W4200158654C33923547 @default.
- W4200158654 hasConceptScore W4200158654C41008148 @default.
- W4200158654 hasConceptScore W4200158654C41156917 @default.
- W4200158654 hasConceptScore W4200158654C50644808 @default.
- W4200158654 hasConceptScore W4200158654C70518039 @default.
- W4200158654 hasConceptScore W4200158654C86803240 @default.
- W4200158654 hasLocation W42001586541 @default.
- W4200158654 hasOpenAccess W4200158654 @default.
- W4200158654 hasPrimaryLocation W42001586541 @default.
- W4200158654 hasRelatedWork W1771781207 @default.
- W4200158654 hasRelatedWork W1823429587 @default.
- W4200158654 hasRelatedWork W1995622179 @default.
- W4200158654 hasRelatedWork W2008708013 @default.
- W4200158654 hasRelatedWork W2014040967 @default.
- W4200158654 hasRelatedWork W2126981375 @default.
- W4200158654 hasRelatedWork W2356487095 @default.
- W4200158654 hasRelatedWork W2415889330 @default.
- W4200158654 hasRelatedWork W3112435056 @default.
- W4200158654 hasRelatedWork W3142002785 @default.
- W4200158654 isParatext "false" @default.
- W4200158654 isRetracted "false" @default.
- W4200158654 workType "article" @default.