Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200164313> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4200164313 endingPage "108510" @default.
- W4200164313 startingPage "108510" @default.
- W4200164313 abstract "To be very specific in this paper, an Attentive Occlusion-adaptive Deep Network, hereafter referred as AODN, is proposed for facial landmark detection, consisting of the geometry-aware module, attention module, and low-rank learning module. Facial Landmark Detection (FLD) is a fundamental pre-processing step of facial related tasks. Occlusion, extreme pose, different expressions and illumination are the main challenges in facial landmark detection related tasks. Convolutional Neural Network (CNN) based FLD methods have attained significant improvement regarding accurate FLD but, to deal with occlusion is still very challenging even for CNN. It is because; probably occlusion misleads CNN on feature representation learning. If faces are partially occluded, the localization accuracy will drop significantly. The role of attention in the human visual system is vital, and researchers proved its significance for the computer vision problem. Taking advantage of geometric relationships among different facial components and attention, we extended our already established Occlusion-adaptive Deep Network (ODN). We introduced the attention module consisting of Channel-wise Attention (CA) and Spatial Attention (SA) to improve its ability to deal with the occlusion and enhance feature representation ability simultaneously. The occlusion probability assists as adaptive weights of high-level features and minimizes the effect of the occlusion and assist in modelling the occlusion. Ablation studies prove the synergistic effect of each module. The summary of our trifold contribution is as follows: i) we introduced attention mechanism in our already established ODN model, to deal with occlusion more precisely, and get the rich feature representation to achieve better performance. ii) As per our best of knowledge, we are the pioneers to introduce CA and SA for FLD to model occlusion. iii) Our proposed methodology reduces the number of entire network parameters, which effectually decreases training time and cost. So, the proposed model is more suitable for scalable data processing. Experimental results prove the better performance of proposed AODN on challenging benchmark datasets." @default.
- W4200164313 created "2021-12-31" @default.
- W4200164313 creator A5038898112 @default.
- W4200164313 creator A5087677543 @default.
- W4200164313 date "2022-05-01" @default.
- W4200164313 modified "2023-10-12" @default.
- W4200164313 title "Attentive occlusion-adaptive deep network for facial landmark detection" @default.
- W4200164313 cites W1963599662 @default.
- W4200164313 cites W2038952578 @default.
- W4200164313 cites W2146566773 @default.
- W4200164313 cites W2559117000 @default.
- W4200164313 cites W2609504292 @default.
- W4200164313 cites W2740103755 @default.
- W4200164313 cites W2785756395 @default.
- W4200164313 cites W2795076639 @default.
- W4200164313 cites W2799930024 @default.
- W4200164313 cites W2885279364 @default.
- W4200164313 cites W2952757518 @default.
- W4200164313 cites W2998442238 @default.
- W4200164313 cites W3035336948 @default.
- W4200164313 doi "https://doi.org/10.1016/j.patcog.2021.108510" @default.
- W4200164313 hasPublicationYear "2022" @default.
- W4200164313 type Work @default.
- W4200164313 citedByCount "3" @default.
- W4200164313 countsByYear W42001643132022 @default.
- W4200164313 countsByYear W42001643132023 @default.
- W4200164313 crossrefType "journal-article" @default.
- W4200164313 hasAuthorship W4200164313A5038898112 @default.
- W4200164313 hasAuthorship W4200164313A5087677543 @default.
- W4200164313 hasConcept C127162648 @default.
- W4200164313 hasConcept C138885662 @default.
- W4200164313 hasConcept C153180895 @default.
- W4200164313 hasConcept C154945302 @default.
- W4200164313 hasConcept C164705383 @default.
- W4200164313 hasConcept C17744445 @default.
- W4200164313 hasConcept C199539241 @default.
- W4200164313 hasConcept C2776268601 @default.
- W4200164313 hasConcept C2776359362 @default.
- W4200164313 hasConcept C2776401178 @default.
- W4200164313 hasConcept C2780297707 @default.
- W4200164313 hasConcept C31258907 @default.
- W4200164313 hasConcept C31972630 @default.
- W4200164313 hasConcept C41008148 @default.
- W4200164313 hasConcept C41895202 @default.
- W4200164313 hasConcept C71924100 @default.
- W4200164313 hasConcept C81363708 @default.
- W4200164313 hasConcept C94625758 @default.
- W4200164313 hasConceptScore W4200164313C127162648 @default.
- W4200164313 hasConceptScore W4200164313C138885662 @default.
- W4200164313 hasConceptScore W4200164313C153180895 @default.
- W4200164313 hasConceptScore W4200164313C154945302 @default.
- W4200164313 hasConceptScore W4200164313C164705383 @default.
- W4200164313 hasConceptScore W4200164313C17744445 @default.
- W4200164313 hasConceptScore W4200164313C199539241 @default.
- W4200164313 hasConceptScore W4200164313C2776268601 @default.
- W4200164313 hasConceptScore W4200164313C2776359362 @default.
- W4200164313 hasConceptScore W4200164313C2776401178 @default.
- W4200164313 hasConceptScore W4200164313C2780297707 @default.
- W4200164313 hasConceptScore W4200164313C31258907 @default.
- W4200164313 hasConceptScore W4200164313C31972630 @default.
- W4200164313 hasConceptScore W4200164313C41008148 @default.
- W4200164313 hasConceptScore W4200164313C41895202 @default.
- W4200164313 hasConceptScore W4200164313C71924100 @default.
- W4200164313 hasConceptScore W4200164313C81363708 @default.
- W4200164313 hasConceptScore W4200164313C94625758 @default.
- W4200164313 hasLocation W42001643131 @default.
- W4200164313 hasOpenAccess W4200164313 @default.
- W4200164313 hasPrimaryLocation W42001643131 @default.
- W4200164313 hasRelatedWork W166366606 @default.
- W4200164313 hasRelatedWork W1990932233 @default.
- W4200164313 hasRelatedWork W2016546218 @default.
- W4200164313 hasRelatedWork W2098911910 @default.
- W4200164313 hasRelatedWork W2098980211 @default.
- W4200164313 hasRelatedWork W2352223314 @default.
- W4200164313 hasRelatedWork W2509104183 @default.
- W4200164313 hasRelatedWork W2509618504 @default.
- W4200164313 hasRelatedWork W2760085659 @default.
- W4200164313 hasRelatedWork W2156243485 @default.
- W4200164313 hasVolume "125" @default.
- W4200164313 isParatext "false" @default.
- W4200164313 isRetracted "false" @default.
- W4200164313 workType "article" @default.