Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200168242> ?p ?o ?g. }
- W4200168242 endingPage "34" @default.
- W4200168242 startingPage "1" @default.
- W4200168242 abstract "Algorithmic – based search approach is ineffective at addressing the problem of multi-dimensional feature selection for document categorization. This study proposes the use of meta heuristic based search approach for optimal feature selection. Elephant optimization (EO) and Ant Colony optimization (ACO) algorithms coupled with Naïve Bayes (NB), Support Vector Machin (SVM), and J48 classifiers were used to highlight the optimization capability of meta-heuristic search for multi-dimensional feature selection problem in document categorization. In addition, the performance results for feature selection using the two meta-heuristic based approaches (EO and ACO) were compared with conventional Best First Search (BFS) and Greedy Stepwise (GS) algorithms on news document categorization. The comparative results showed that global optimal feature subsets were attained using adaptive parameters tuning in meta-heuristic based feature selection optimization scheme. In addition, the selected number of feature subsets were minimized dramatically for document classification." @default.
- W4200168242 created "2021-12-31" @default.
- W4200168242 creator A5008101137 @default.
- W4200168242 creator A5022938538 @default.
- W4200168242 creator A5067985411 @default.
- W4200168242 date "2022-01-07" @default.
- W4200168242 modified "2023-10-18" @default.
- W4200168242 title "A Comparative Study of Meta-Heuristic and Conventional Search in Optimization of Multi-Dimensional Feature Selection" @default.
- W4200168242 cites W1092618484 @default.
- W4200168242 cites W1523479877 @default.
- W4200168242 cites W1554631849 @default.
- W4200168242 cites W1595907733 @default.
- W4200168242 cites W1964144089 @default.
- W4200168242 cites W1970974276 @default.
- W4200168242 cites W1997468131 @default.
- W4200168242 cites W2009684236 @default.
- W4200168242 cites W2015787694 @default.
- W4200168242 cites W2026535637 @default.
- W4200168242 cites W2036484994 @default.
- W4200168242 cites W2049460184 @default.
- W4200168242 cites W2055562977 @default.
- W4200168242 cites W2057455558 @default.
- W4200168242 cites W2059321491 @default.
- W4200168242 cites W2071912148 @default.
- W4200168242 cites W2076882449 @default.
- W4200168242 cites W2094023061 @default.
- W4200168242 cites W2101551924 @default.
- W4200168242 cites W2101753511 @default.
- W4200168242 cites W2103204076 @default.
- W4200168242 cites W2118561568 @default.
- W4200168242 cites W2129250947 @default.
- W4200168242 cites W2135304732 @default.
- W4200168242 cites W2139974998 @default.
- W4200168242 cites W2143153057 @default.
- W4200168242 cites W2143978378 @default.
- W4200168242 cites W2149964041 @default.
- W4200168242 cites W2151040995 @default.
- W4200168242 cites W2160540263 @default.
- W4200168242 cites W2161515141 @default.
- W4200168242 cites W2169437694 @default.
- W4200168242 cites W2200927751 @default.
- W4200168242 cites W2244602389 @default.
- W4200168242 cites W2296229202 @default.
- W4200168242 cites W2296367925 @default.
- W4200168242 cites W2310257988 @default.
- W4200168242 cites W2343420905 @default.
- W4200168242 cites W2500651746 @default.
- W4200168242 cites W2521144550 @default.
- W4200168242 cites W2557913829 @default.
- W4200168242 cites W2583603977 @default.
- W4200168242 cites W2593992001 @default.
- W4200168242 cites W2605902561 @default.
- W4200168242 cites W2662297521 @default.
- W4200168242 cites W2729869982 @default.
- W4200168242 cites W2734719344 @default.
- W4200168242 cites W2756556215 @default.
- W4200168242 cites W2771040080 @default.
- W4200168242 cites W2774064330 @default.
- W4200168242 cites W2774369340 @default.
- W4200168242 cites W2787166334 @default.
- W4200168242 cites W2793758168 @default.
- W4200168242 cites W2795035287 @default.
- W4200168242 cites W2810376969 @default.
- W4200168242 cites W2883460045 @default.
- W4200168242 cites W2890190333 @default.
- W4200168242 cites W2898799121 @default.
- W4200168242 cites W2898995296 @default.
- W4200168242 cites W2900971016 @default.
- W4200168242 cites W2906662890 @default.
- W4200168242 cites W2911627187 @default.
- W4200168242 cites W2912958799 @default.
- W4200168242 cites W2916675586 @default.
- W4200168242 cites W2940269050 @default.
- W4200168242 cites W2945495424 @default.
- W4200168242 cites W2954945098 @default.
- W4200168242 cites W2965743638 @default.
- W4200168242 cites W2968862197 @default.
- W4200168242 cites W2980970477 @default.
- W4200168242 cites W3000739907 @default.
- W4200168242 cites W3004316272 @default.
- W4200168242 cites W3004565805 @default.
- W4200168242 cites W3007689421 @default.
- W4200168242 cites W3090556797 @default.
- W4200168242 cites W4213275481 @default.
- W4200168242 cites W4238742984 @default.
- W4200168242 doi "https://doi.org/10.4018/ijamc.292517" @default.
- W4200168242 hasPublicationYear "2022" @default.
- W4200168242 type Work @default.
- W4200168242 citedByCount "3" @default.
- W4200168242 countsByYear W42001682422022 @default.
- W4200168242 countsByYear W42001682422023 @default.
- W4200168242 crossrefType "journal-article" @default.
- W4200168242 hasAuthorship W4200168242A5008101137 @default.
- W4200168242 hasAuthorship W4200168242A5022938538 @default.
- W4200168242 hasAuthorship W4200168242A5067985411 @default.
- W4200168242 hasBestOaLocation W42001682421 @default.
- W4200168242 hasConcept C109718341 @default.
- W4200168242 hasConcept C119857082 @default.