Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200168840> ?p ?o ?g. }
- W4200168840 endingPage "142" @default.
- W4200168840 startingPage "129" @default.
- W4200168840 abstract "Abstract The fact that bedload transport is an inherently time‐variant and location‐sensitive fluvial process was revealed by systematic sampling, nine decades ago. Subsequent stream‐wide measurements, that frequently incorporated lengthy collection periods, as well as the adoption of standardized sampling procedures, averaged out some temporal and spatial variability. However, continuous, highly resolved, long‐period records of transport activity generated by active and passive bedload monitoring on diverse rivers have recently brought this variability into sharp focus. A defining characteristic of these ‘big data’ is that there are many possible bedload transport rates for each discharge and a wide range of discharges associated with each transport rate. Crucially, this incoherent scatter, which is generated by the various factors that affect bedload transport, can no longer be viewed as ‘noise’ that can be averaged out. We demonstrate that, even for small datasets, different methods of reporting and analysing bedload transport records provide different perspectives on the bedload transport rate–flow relation. The inclusion/exclusion of zero values, present in all data that capture the intermittent nature of bedload transport, also affects the relation. To unlock the potential of big data and facilitate the development of bedload transport–flow relations from field measurements, it is essential to employ modes of analysis that are robust to outliers and do not assume that associations between the independent and dependent variables are the same at all levels." @default.
- W4200168840 created "2021-12-31" @default.
- W4200168840 creator A5043475021 @default.
- W4200168840 creator A5054442653 @default.
- W4200168840 creator A5058026876 @default.
- W4200168840 date "2022-01-01" @default.
- W4200168840 modified "2023-10-12" @default.
- W4200168840 title "Good vibrations: Big data impact bedload research" @default.
- W4200168840 cites W1479851317 @default.
- W4200168840 cites W1493405679 @default.
- W4200168840 cites W1510659740 @default.
- W4200168840 cites W1544474101 @default.
- W4200168840 cites W1574056869 @default.
- W4200168840 cites W1575503022 @default.
- W4200168840 cites W1577858001 @default.
- W4200168840 cites W1593442416 @default.
- W4200168840 cites W1595157374 @default.
- W4200168840 cites W1596058732 @default.
- W4200168840 cites W1969302920 @default.
- W4200168840 cites W1970980421 @default.
- W4200168840 cites W1975527068 @default.
- W4200168840 cites W1992432959 @default.
- W4200168840 cites W1992902149 @default.
- W4200168840 cites W1996533558 @default.
- W4200168840 cites W1997632392 @default.
- W4200168840 cites W1998364950 @default.
- W4200168840 cites W1998743038 @default.
- W4200168840 cites W2000915986 @default.
- W4200168840 cites W2001592957 @default.
- W4200168840 cites W2003850660 @default.
- W4200168840 cites W2010793998 @default.
- W4200168840 cites W2011441348 @default.
- W4200168840 cites W2012734657 @default.
- W4200168840 cites W2021775598 @default.
- W4200168840 cites W2023884889 @default.
- W4200168840 cites W2024081693 @default.
- W4200168840 cites W2025966001 @default.
- W4200168840 cites W2042681318 @default.
- W4200168840 cites W2048469029 @default.
- W4200168840 cites W2048639355 @default.
- W4200168840 cites W205259702 @default.
- W4200168840 cites W2067865326 @default.
- W4200168840 cites W2077344818 @default.
- W4200168840 cites W2080039646 @default.
- W4200168840 cites W2083366433 @default.
- W4200168840 cites W2084250713 @default.
- W4200168840 cites W2089485095 @default.
- W4200168840 cites W2089758117 @default.
- W4200168840 cites W2096463624 @default.
- W4200168840 cites W2098610027 @default.
- W4200168840 cites W2102152110 @default.
- W4200168840 cites W2103723815 @default.
- W4200168840 cites W2110963360 @default.
- W4200168840 cites W2114073397 @default.
- W4200168840 cites W2125871608 @default.
- W4200168840 cites W2128499220 @default.
- W4200168840 cites W2131088932 @default.
- W4200168840 cites W2135113252 @default.
- W4200168840 cites W2135723728 @default.
- W4200168840 cites W2137595527 @default.
- W4200168840 cites W2153209739 @default.
- W4200168840 cites W2156079325 @default.
- W4200168840 cites W2212088115 @default.
- W4200168840 cites W2225228920 @default.
- W4200168840 cites W2254317993 @default.
- W4200168840 cites W2397312064 @default.
- W4200168840 cites W2523079586 @default.
- W4200168840 cites W2531117443 @default.
- W4200168840 cites W2556202512 @default.
- W4200168840 cites W2568536964 @default.
- W4200168840 cites W2568849 @default.
- W4200168840 cites W2583177915 @default.
- W4200168840 cites W2586686694 @default.
- W4200168840 cites W2595044821 @default.
- W4200168840 cites W2597046226 @default.
- W4200168840 cites W2765968449 @default.
- W4200168840 cites W2771910403 @default.
- W4200168840 cites W2779249158 @default.
- W4200168840 cites W2783695727 @default.
- W4200168840 cites W2797632339 @default.
- W4200168840 cites W2800297320 @default.
- W4200168840 cites W2804609082 @default.
- W4200168840 cites W2886179922 @default.
- W4200168840 cites W2899998075 @default.
- W4200168840 cites W2916217263 @default.
- W4200168840 cites W2964674526 @default.
- W4200168840 cites W2971105527 @default.
- W4200168840 cites W3005804502 @default.
- W4200168840 cites W3009190241 @default.
- W4200168840 cites W3016383674 @default.
- W4200168840 cites W3081515117 @default.
- W4200168840 cites W3093162163 @default.
- W4200168840 cites W3096309338 @default.
- W4200168840 cites W3105354154 @default.
- W4200168840 cites W3114910434 @default.
- W4200168840 cites W3129808540 @default.
- W4200168840 cites W3134623807 @default.
- W4200168840 cites W3134847833 @default.