Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200172351> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4200172351 endingPage "203" @default.
- W4200172351 startingPage "191" @default.
- W4200172351 abstract "Purpose This paper generalizes the quadratic framework introduced by Le Courtois (2016) and Sumpf (2018), to obtain new credibility premiums in the balanced case, i.e. under the balanced squared error loss function. More precisely, the authors construct a quadratic credibility framework under the net quadratic loss function where premiums are estimated based on the values of past observations and of past squared observations under the parametric and the non-parametric approaches, this framework is useful for the practitioner who wants to explicitly take into account higher order (cross) moments of past data. Design/methodology/approach In the actuarial field, credibility theory is an empirical model used to calculate the premium. One of the crucial tasks of the actuary in the insurance company is to design a tariff structure that will fairly distribute the burden of claims among insureds. In this work, the authors use the weighted balanced loss function (WBLF, henceforth) to obtain new credibility premiums, and WBLF is a generalized loss function introduced by Zellner (1994) (see Gupta and Berger (1994), pp. 371-390) which appears also in Dey et al. (1999) and Farsipour and Asgharzadhe (2004). Findings The authors declare that there is no conflict of interest and the funding information is not applicable. Research limitations/implications This work is motivated by the following: quadratic credibility premium under the balanced loss function is useful for the practitioner who wants to explicitly take into account higher order (cross) moments and new effects such as the clustering effect to finding a premium more credible and more precise, which arranges both parts: the insurer and the insured. Also, it is easy to apply for parametric and non-parametric approaches. In addition, the formulas of the parametric (Poisson–gamma case) and the non-parametric approach are simple in form and may be used to find a more flexible premium in many special cases. On the other hand, this work neglects the semi-parametric approach because it is rarely used by practitioners. Practical implications There are several examples of actuarial science (credibility). Originality/value In this paper, the authors used the WBLF and a quadratic adjustment to obtain new credibility premiums. More precisely, the authors construct a quadratic credibility framework under the net quadratic loss function where premiums are estimated based on the values of past observations and of past squared observations under the parametric and the non-parametric approaches, this framework is useful for the practitioner who wants to explicitly take into account higher order (cross) moments of past data." @default.
- W4200172351 created "2021-12-31" @default.
- W4200172351 creator A5014593857 @default.
- W4200172351 creator A5037056902 @default.
- W4200172351 creator A5090932125 @default.
- W4200172351 date "2021-12-29" @default.
- W4200172351 modified "2023-09-24" @default.
- W4200172351 title "Some results on quadratic credibility premium using the balanced loss function" @default.
- W4200172351 cites W1821710187 @default.
- W4200172351 cites W1971682728 @default.
- W4200172351 cites W1999570133 @default.
- W4200172351 cites W2045163632 @default.
- W4200172351 cites W2076637669 @default.
- W4200172351 cites W2339570035 @default.
- W4200172351 cites W2400614507 @default.
- W4200172351 cites W4250853154 @default.
- W4200172351 doi "https://doi.org/10.1108/ajms-08-2021-0192" @default.
- W4200172351 hasPublicationYear "2021" @default.
- W4200172351 type Work @default.
- W4200172351 citedByCount "0" @default.
- W4200172351 crossrefType "journal-article" @default.
- W4200172351 hasAuthorship W4200172351A5014593857 @default.
- W4200172351 hasAuthorship W4200172351A5037056902 @default.
- W4200172351 hasAuthorship W4200172351A5090932125 @default.
- W4200172351 hasBestOaLocation W42001723511 @default.
- W4200172351 hasConcept C10138342 @default.
- W4200172351 hasConcept C105795698 @default.
- W4200172351 hasConcept C117251300 @default.
- W4200172351 hasConcept C129844170 @default.
- W4200172351 hasConcept C14036430 @default.
- W4200172351 hasConcept C149782125 @default.
- W4200172351 hasConcept C162118730 @default.
- W4200172351 hasConcept C162324750 @default.
- W4200172351 hasConcept C17744445 @default.
- W4200172351 hasConcept C182306322 @default.
- W4200172351 hasConcept C199360897 @default.
- W4200172351 hasConcept C199539241 @default.
- W4200172351 hasConcept C2524010 @default.
- W4200172351 hasConcept C2777014519 @default.
- W4200172351 hasConcept C2780224610 @default.
- W4200172351 hasConcept C2780801425 @default.
- W4200172351 hasConcept C33923547 @default.
- W4200172351 hasConcept C41008148 @default.
- W4200172351 hasConcept C44211194 @default.
- W4200172351 hasConcept C78458016 @default.
- W4200172351 hasConcept C86803240 @default.
- W4200172351 hasConcept C97256817 @default.
- W4200172351 hasConceptScore W4200172351C10138342 @default.
- W4200172351 hasConceptScore W4200172351C105795698 @default.
- W4200172351 hasConceptScore W4200172351C117251300 @default.
- W4200172351 hasConceptScore W4200172351C129844170 @default.
- W4200172351 hasConceptScore W4200172351C14036430 @default.
- W4200172351 hasConceptScore W4200172351C149782125 @default.
- W4200172351 hasConceptScore W4200172351C162118730 @default.
- W4200172351 hasConceptScore W4200172351C162324750 @default.
- W4200172351 hasConceptScore W4200172351C17744445 @default.
- W4200172351 hasConceptScore W4200172351C182306322 @default.
- W4200172351 hasConceptScore W4200172351C199360897 @default.
- W4200172351 hasConceptScore W4200172351C199539241 @default.
- W4200172351 hasConceptScore W4200172351C2524010 @default.
- W4200172351 hasConceptScore W4200172351C2777014519 @default.
- W4200172351 hasConceptScore W4200172351C2780224610 @default.
- W4200172351 hasConceptScore W4200172351C2780801425 @default.
- W4200172351 hasConceptScore W4200172351C33923547 @default.
- W4200172351 hasConceptScore W4200172351C41008148 @default.
- W4200172351 hasConceptScore W4200172351C44211194 @default.
- W4200172351 hasConceptScore W4200172351C78458016 @default.
- W4200172351 hasConceptScore W4200172351C86803240 @default.
- W4200172351 hasConceptScore W4200172351C97256817 @default.
- W4200172351 hasIssue "2" @default.
- W4200172351 hasLocation W42001723511 @default.
- W4200172351 hasOpenAccess W4200172351 @default.
- W4200172351 hasPrimaryLocation W42001723511 @default.
- W4200172351 hasRelatedWork W147476794 @default.
- W4200172351 hasRelatedWork W2181944884 @default.
- W4200172351 hasRelatedWork W232934281 @default.
- W4200172351 hasRelatedWork W2349325068 @default.
- W4200172351 hasRelatedWork W2357854932 @default.
- W4200172351 hasRelatedWork W2584330987 @default.
- W4200172351 hasRelatedWork W2766998450 @default.
- W4200172351 hasRelatedWork W2964145820 @default.
- W4200172351 hasRelatedWork W4200172351 @default.
- W4200172351 hasRelatedWork W4299881150 @default.
- W4200172351 hasVolume "29" @default.
- W4200172351 isParatext "false" @default.
- W4200172351 isRetracted "false" @default.
- W4200172351 workType "article" @default.