Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200179152> ?p ?o ?g. }
- W4200179152 abstract "Recently, deep learning (DL)-based de novo drug design represents a new trend in pharmaceutical research, and numerous DL-based methods have been developed for the generation of novel compounds with desired properties. However, a comprehensive understanding of the advantages and disadvantages of these methods is still lacking. In this study, the performances of different generative models were evaluated by analyzing the properties of the generated molecules in different scenarios, such as goal-directed (rediscovery, optimization and scaffold hopping of active compounds) and target-specific (generation of novel compounds for a given target) tasks. In overall, the DL-based models have significant advantages over the baseline models built by the traditional methods in learning the physicochemical property distributions of the training sets and may be more suitable for target-specific tasks. However, both the baselines and DL-based generative models cannot fully exploit the scaffolds of the training sets, and the molecules generated by the DL-based methods even have lower scaffold diversity than those generated by the traditional models. Moreover, our assessment illustrates that the DL-based methods do not exhibit obvious advantages over the genetic algorithm-based baselines in goal-directed tasks. We believe that our study provides valuable guidance for the effective use of generative models in de novo drug design." @default.
- W4200179152 created "2021-12-31" @default.
- W4200179152 creator A5004692959 @default.
- W4200179152 creator A5011434518 @default.
- W4200179152 creator A5019503356 @default.
- W4200179152 creator A5028525523 @default.
- W4200179152 creator A5043148241 @default.
- W4200179152 creator A5061654403 @default.
- W4200179152 creator A5070107205 @default.
- W4200179152 creator A5083809384 @default.
- W4200179152 creator A5089675765 @default.
- W4200179152 date "2021-12-21" @default.
- W4200179152 modified "2023-10-06" @default.
- W4200179152 title "Comprehensive assessment of deep generative architectures for <i>de novo</i> drug design" @default.
- W4200179152 cites W1582109070 @default.
- W4200179152 cites W1592238003 @default.
- W4200179152 cites W1757990252 @default.
- W4200179152 cites W1964421276 @default.
- W4200179152 cites W1973974137 @default.
- W4200179152 cites W1986176168 @default.
- W4200179152 cites W1991286793 @default.
- W4200179152 cites W1998344725 @default.
- W4200179152 cites W2009299989 @default.
- W4200179152 cites W2011230643 @default.
- W4200179152 cites W2011647105 @default.
- W4200179152 cites W2023818227 @default.
- W4200179152 cites W2027482274 @default.
- W4200179152 cites W2035231834 @default.
- W4200179152 cites W2043509228 @default.
- W4200179152 cites W2050458179 @default.
- W4200179152 cites W2052933929 @default.
- W4200179152 cites W2060217906 @default.
- W4200179152 cites W2062849346 @default.
- W4200179152 cites W2077597215 @default.
- W4200179152 cites W2078521274 @default.
- W4200179152 cites W2113863960 @default.
- W4200179152 cites W2117819606 @default.
- W4200179152 cites W2143419487 @default.
- W4200179152 cites W2146984355 @default.
- W4200179152 cites W2155478691 @default.
- W4200179152 cites W2159887157 @default.
- W4200179152 cites W2177317049 @default.
- W4200179152 cites W2180898434 @default.
- W4200179152 cites W2204695023 @default.
- W4200179152 cites W2558999090 @default.
- W4200179152 cites W2578240541 @default.
- W4200179152 cites W2610148085 @default.
- W4200179152 cites W2615705357 @default.
- W4200179152 cites W2736137960 @default.
- W4200179152 cites W2763220183 @default.
- W4200179152 cites W2765224015 @default.
- W4200179152 cites W2883583109 @default.
- W4200179152 cites W2887447356 @default.
- W4200179152 cites W2899070097 @default.
- W4200179152 cites W2904656109 @default.
- W4200179152 cites W2914542247 @default.
- W4200179152 cites W2914635984 @default.
- W4200179152 cites W2937307539 @default.
- W4200179152 cites W2945551948 @default.
- W4200179152 cites W2947161483 @default.
- W4200179152 cites W2949986955 @default.
- W4200179152 cites W2950354128 @default.
- W4200179152 cites W2953128081 @default.
- W4200179152 cites W2971690404 @default.
- W4200179152 cites W2991736596 @default.
- W4200179152 cites W2992586577 @default.
- W4200179152 cites W3011286504 @default.
- W4200179152 cites W3030068589 @default.
- W4200179152 cites W3048079539 @default.
- W4200179152 cites W3094686696 @default.
- W4200179152 cites W3098269892 @default.
- W4200179152 cites W3100751385 @default.
- W4200179152 cites W3100839802 @default.
- W4200179152 cites W3104956673 @default.
- W4200179152 cites W3126326305 @default.
- W4200179152 cites W3127347132 @default.
- W4200179152 cites W3165171933 @default.
- W4200179152 cites W3195161349 @default.
- W4200179152 cites W3207373390 @default.
- W4200179152 cites W4233548753 @default.
- W4200179152 cites W4362017974 @default.
- W4200179152 doi "https://doi.org/10.1093/bib/bbab544" @default.
- W4200179152 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34929743" @default.
- W4200179152 hasPublicationYear "2021" @default.
- W4200179152 type Work @default.
- W4200179152 citedByCount "7" @default.
- W4200179152 countsByYear W42001791522022 @default.
- W4200179152 countsByYear W42001791522023 @default.
- W4200179152 crossrefType "journal-article" @default.
- W4200179152 hasAuthorship W4200179152A5004692959 @default.
- W4200179152 hasAuthorship W4200179152A5011434518 @default.
- W4200179152 hasAuthorship W4200179152A5019503356 @default.
- W4200179152 hasAuthorship W4200179152A5028525523 @default.
- W4200179152 hasAuthorship W4200179152A5043148241 @default.
- W4200179152 hasAuthorship W4200179152A5061654403 @default.
- W4200179152 hasAuthorship W4200179152A5070107205 @default.
- W4200179152 hasAuthorship W4200179152A5083809384 @default.
- W4200179152 hasAuthorship W4200179152A5089675765 @default.
- W4200179152 hasConcept C108583219 @default.
- W4200179152 hasConcept C119857082 @default.