Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200181176> ?p ?o ?g. }
- W4200181176 endingPage "106631" @default.
- W4200181176 startingPage "106631" @default.
- W4200181176 abstract "Farms face various risks such as uncertainties in the natural growth process, obtaining adequate financing, volatile input and output prices, unpredictable changes in farm-related policy and regulations, and farmers‘ personal health problems. Accordingly, farmers have to make decisions to be prepared for such situations under risk or mitigate their impacts to maintain essential functions. Increasingly, a data-driven perspective is warranted where machine learning (ML) has become an essential tool for automatic extraction of useful information to support decision-making in farm management as well as risk management. ML’s role in farm risk management (FRM) has recently increased with advances in technology and digitalization. This paper provides a literature review in the form of a systematic mapping study to identify the publications, trends, active research communities, and detailed reviews on the use of ML methods for FRM. Accordingly, nine research/mapping questions are designed to extract the required information. In total, we retrieved 1819 papers, of which 746 papers were selected based on the defined exclusion criteria for a detailed review. We categorized the studies based on the addressed risk types (e.g., production risk), assessments that addressed risk components (e.g., resilience), used ML types (e.g., supervised learning) and algorithms ranging from regression modeling to deep learning, addressed ML tasks (e.g., classification), data types (e.g., images), and farm types (e.g., crop-based farm). The results reveal that there is a significant increase in employing ML methods including deep learning and convolutional neural networks for FRM in recent years. The production risk and impact/damage assessment are the most frequently addressed risk type and assessment that addressed risk components in ML-FRM, respectively. In addition, research gaps and open problems are identified and accordingly insights and recommendations from risk management and machine learning perspectives are provided for future studies including the need for ML methods for different risk types (e.g., financial risk), assessments addressing different risk components (e.g., resilience assessment), and developing more advanced ML methods (e.g., reinforcement learning) for FRM." @default.
- W4200181176 created "2021-12-31" @default.
- W4200181176 creator A5032629854 @default.
- W4200181176 creator A5032732614 @default.
- W4200181176 creator A5069826864 @default.
- W4200181176 creator A5086176346 @default.
- W4200181176 creator A5086426963 @default.
- W4200181176 date "2022-01-01" @default.
- W4200181176 modified "2023-10-16" @default.
- W4200181176 title "Machine learning-based farm risk management: A systematic mapping review" @default.
- W4200181176 cites W1591971745 @default.
- W4200181176 cites W1635175776 @default.
- W4200181176 cites W1748116371 @default.
- W4200181176 cites W1871840861 @default.
- W4200181176 cites W1967346653 @default.
- W4200181176 cites W1980237824 @default.
- W4200181176 cites W1984395885 @default.
- W4200181176 cites W1985064953 @default.
- W4200181176 cites W1998235399 @default.
- W4200181176 cites W1999798506 @default.
- W4200181176 cites W2012654242 @default.
- W4200181176 cites W2019610851 @default.
- W4200181176 cites W2026525810 @default.
- W4200181176 cites W2026640827 @default.
- W4200181176 cites W2038913727 @default.
- W4200181176 cites W2042878516 @default.
- W4200181176 cites W2044703107 @default.
- W4200181176 cites W2049119397 @default.
- W4200181176 cites W2053638604 @default.
- W4200181176 cites W2054459031 @default.
- W4200181176 cites W2061838420 @default.
- W4200181176 cites W2070419454 @default.
- W4200181176 cites W2078271530 @default.
- W4200181176 cites W2084576314 @default.
- W4200181176 cites W2093520441 @default.
- W4200181176 cites W2099473616 @default.
- W4200181176 cites W2109992793 @default.
- W4200181176 cites W2116963152 @default.
- W4200181176 cites W2149369033 @default.
- W4200181176 cites W2155252538 @default.
- W4200181176 cites W2162772680 @default.
- W4200181176 cites W2164705462 @default.
- W4200181176 cites W2199942819 @default.
- W4200181176 cites W2245259493 @default.
- W4200181176 cites W2335661518 @default.
- W4200181176 cites W2338701693 @default.
- W4200181176 cites W2340706195 @default.
- W4200181176 cites W2468208549 @default.
- W4200181176 cites W2469311201 @default.
- W4200181176 cites W2470368200 @default.
- W4200181176 cites W2473156356 @default.
- W4200181176 cites W2484896917 @default.
- W4200181176 cites W2492358331 @default.
- W4200181176 cites W2498691150 @default.
- W4200181176 cites W2510851210 @default.
- W4200181176 cites W2520485738 @default.
- W4200181176 cites W2523194939 @default.
- W4200181176 cites W2530668397 @default.
- W4200181176 cites W2549468845 @default.
- W4200181176 cites W2558488867 @default.
- W4200181176 cites W2569422953 @default.
- W4200181176 cites W2593945727 @default.
- W4200181176 cites W2595453559 @default.
- W4200181176 cites W2723908165 @default.
- W4200181176 cites W2733343268 @default.
- W4200181176 cites W2737615274 @default.
- W4200181176 cites W2747192728 @default.
- W4200181176 cites W2750506686 @default.
- W4200181176 cites W2753403518 @default.
- W4200181176 cites W2755766995 @default.
- W4200181176 cites W2758023686 @default.
- W4200181176 cites W2759114566 @default.
- W4200181176 cites W2762142234 @default.
- W4200181176 cites W2765816897 @default.
- W4200181176 cites W2774579163 @default.
- W4200181176 cites W2790103870 @default.
- W4200181176 cites W2792072702 @default.
- W4200181176 cites W2792871761 @default.
- W4200181176 cites W2794410949 @default.
- W4200181176 cites W2799842361 @default.
- W4200181176 cites W2806724257 @default.
- W4200181176 cites W2808147594 @default.
- W4200181176 cites W2883468369 @default.
- W4200181176 cites W2884812134 @default.
- W4200181176 cites W2887968033 @default.
- W4200181176 cites W2888867267 @default.
- W4200181176 cites W2891068048 @default.
- W4200181176 cites W2896242594 @default.
- W4200181176 cites W2899270109 @default.
- W4200181176 cites W2900147932 @default.
- W4200181176 cites W2900380085 @default.
- W4200181176 cites W2900968173 @default.
- W4200181176 cites W2903449250 @default.
- W4200181176 cites W2903760750 @default.
- W4200181176 cites W2908283033 @default.
- W4200181176 cites W2908783980 @default.
- W4200181176 cites W2909106465 @default.
- W4200181176 cites W2909166926 @default.