Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200188864> ?p ?o ?g. }
- W4200188864 endingPage "1250" @default.
- W4200188864 startingPage "1239" @default.
- W4200188864 abstract "High-throughput maize phenotyping at both organ and plant levels plays a key role in molecular breeding for increasing crop yields. Although the rapid development of light detection and ranging (LiDAR) provides a new way to characterize three-dimensional (3D) plant structure, there is a need to develop robust algorithms for extracting 3D phenotypic traits from LiDAR data to assist in gene identification and selection. Accurate 3D phenotyping in field environments remains challenging, owing to difficulties in segmentation of organs and individual plants in field terrestrial LiDAR data. We describe a two-stage method that combines both convolutional neural networks (CNNs) and morphological characteristics to segment stems and leaves of individual maize plants in field environments. It initially extracts stem points using the PointCNN model and obtains stem instances by fitting 3D cylinders to the points. It then segments the field LiDAR point cloud into individual plants using local point densities and 3D morphological structures of maize plants. The method was tested using 40 samples from field observations and showed high accuracy in the segmentation of both organs (F-score =0.8207) and plants (F-score =0.9909). The effectiveness of terrestrial LiDAR for phenotyping at organ (including leaf area and stem position) and individual plant (including individual height and crown width) levels in field environments was evaluated. The accuracies of derived stem position (position error =0.0141 m), plant height (R2 >0.99), crown width (R2 >0.90), and leaf area (R2 >0.85) allow investigating plant structural and functional phenotypes in a high-throughput way. This CNN-based solution overcomes the major challenges in organ-level phenotypic trait extraction associated with the organ segmentation, and potentially contributes to studies of plant phenomics and precision agriculture." @default.
- W4200188864 created "2021-12-31" @default.
- W4200188864 creator A5009978583 @default.
- W4200188864 creator A5014968449 @default.
- W4200188864 creator A5030654256 @default.
- W4200188864 creator A5043065723 @default.
- W4200188864 creator A5057519471 @default.
- W4200188864 creator A5070526801 @default.
- W4200188864 creator A5083755109 @default.
- W4200188864 date "2022-10-01" @default.
- W4200188864 modified "2023-10-10" @default.
- W4200188864 title "Automatic segmentation of stem and leaf components and individual maize plants in field terrestrial LiDAR data using convolutional neural networks" @default.
- W4200188864 cites W1652321627 @default.
- W4200188864 cites W1987742815 @default.
- W4200188864 cites W1998686312 @default.
- W4200188864 cites W2001563151 @default.
- W4200188864 cites W2006722222 @default.
- W4200188864 cites W2015644501 @default.
- W4200188864 cites W2021817645 @default.
- W4200188864 cites W2025238960 @default.
- W4200188864 cites W2046255986 @default.
- W4200188864 cites W2053465517 @default.
- W4200188864 cites W2060224812 @default.
- W4200188864 cites W2065554891 @default.
- W4200188864 cites W2072723786 @default.
- W4200188864 cites W2081889060 @default.
- W4200188864 cites W2087111199 @default.
- W4200188864 cites W2105285489 @default.
- W4200188864 cites W2126143576 @default.
- W4200188864 cites W2135249503 @default.
- W4200188864 cites W2138973222 @default.
- W4200188864 cites W2140868313 @default.
- W4200188864 cites W2148333466 @default.
- W4200188864 cites W2152864241 @default.
- W4200188864 cites W2223657480 @default.
- W4200188864 cites W2245444544 @default.
- W4200188864 cites W2288090578 @default.
- W4200188864 cites W2322716129 @default.
- W4200188864 cites W2472610039 @default.
- W4200188864 cites W2581010393 @default.
- W4200188864 cites W2586943024 @default.
- W4200188864 cites W2604937504 @default.
- W4200188864 cites W2734511492 @default.
- W4200188864 cites W2757246795 @default.
- W4200188864 cites W2792783324 @default.
- W4200188864 cites W2797338994 @default.
- W4200188864 cites W2805916667 @default.
- W4200188864 cites W2891682150 @default.
- W4200188864 cites W2900732439 @default.
- W4200188864 cites W2902048518 @default.
- W4200188864 cites W2921848951 @default.
- W4200188864 cites W2947105837 @default.
- W4200188864 cites W2987303464 @default.
- W4200188864 cites W2994639114 @default.
- W4200188864 cites W2998330714 @default.
- W4200188864 cites W3002058427 @default.
- W4200188864 cites W3013508726 @default.
- W4200188864 cites W3021138038 @default.
- W4200188864 cites W3022670798 @default.
- W4200188864 cites W3025836832 @default.
- W4200188864 cites W3026566795 @default.
- W4200188864 cites W3039389508 @default.
- W4200188864 cites W3113125552 @default.
- W4200188864 cites W3120504399 @default.
- W4200188864 cites W3159516372 @default.
- W4200188864 doi "https://doi.org/10.1016/j.cj.2021.10.010" @default.
- W4200188864 hasPublicationYear "2022" @default.
- W4200188864 type Work @default.
- W4200188864 citedByCount "17" @default.
- W4200188864 countsByYear W42001888642022 @default.
- W4200188864 countsByYear W42001888642023 @default.
- W4200188864 crossrefType "journal-article" @default.
- W4200188864 hasAuthorship W4200188864A5009978583 @default.
- W4200188864 hasAuthorship W4200188864A5014968449 @default.
- W4200188864 hasAuthorship W4200188864A5030654256 @default.
- W4200188864 hasAuthorship W4200188864A5043065723 @default.
- W4200188864 hasAuthorship W4200188864A5057519471 @default.
- W4200188864 hasAuthorship W4200188864A5070526801 @default.
- W4200188864 hasAuthorship W4200188864A5083755109 @default.
- W4200188864 hasBestOaLocation W42001888641 @default.
- W4200188864 hasConcept C127313418 @default.
- W4200188864 hasConcept C131979681 @default.
- W4200188864 hasConcept C154945302 @default.
- W4200188864 hasConcept C199343813 @default.
- W4200188864 hasConcept C202444582 @default.
- W4200188864 hasConcept C2778400979 @default.
- W4200188864 hasConcept C33923547 @default.
- W4200188864 hasConcept C41008148 @default.
- W4200188864 hasConcept C51399673 @default.
- W4200188864 hasConcept C59822182 @default.
- W4200188864 hasConcept C62649853 @default.
- W4200188864 hasConcept C6557445 @default.
- W4200188864 hasConcept C71924100 @default.
- W4200188864 hasConcept C81363708 @default.
- W4200188864 hasConcept C86803240 @default.
- W4200188864 hasConcept C89600930 @default.
- W4200188864 hasConcept C9652623 @default.
- W4200188864 hasConceptScore W4200188864C127313418 @default.