Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200190069> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4200190069 endingPage "S332" @default.
- W4200190069 startingPage "S331" @default.
- W4200190069 abstract "Abstract Background The novel coronavirus disease 2019 (COVID-19) pandemic remains a global challenge. Accurate COVID-19 prognosis remains an important aspect of clinical management. While many prognostic systems have been proposed, most are derived from analyses of individual symptoms or biomarkers. Here, we take a machine learning approach to first identify discrete clusters of early stage-symptoms which may delineate groups with distinct symptom phenotypes. We then sought to identify whether these groups correlate with subsequent disease severity. Methods The Epidemiology, Immunology, and Clinical Characteristics of Emerging Infectious Diseases with Pandemic Potential (EPICC) study is a longitudinal cohort study with data and biospecimens collected from nine military treatment facilities over 1 year of follow-up. Demographic and clinical characteristics were measured with interviews and electronic medical record review. Early symptoms by organ-domain were measured by FLU-PRO-plus surveys collected for 14 days post-enrollment, with surveys completed a median 14.5 (Interquartile Range, IQR = 13) days post-symptom onset. Using these FLU-PRO-plus responses, we applied principal component analysis followed by unsupervised machine learning algorithm k-means to identify groups with distinct clusters of symptoms. We then fit multivariate logistic regression models to determine how these early-symptom clusters correlated with hospitalization risk after controlling for age, sex, race, and obesity. Results Using SARS-CoV-2 positive participants (n = 1137) from the EPICC cohort (Figure 1), we transformed reported symptoms into domains and identified three groups of participants with distinct clusters of symptoms. Logistic regression demonstrated that cluster-2 was associated with an approximately three-fold increased odds [3.01 (95% CI: 2-4.52); P < 0.001] of hospitalization which remained significant after controlling for other factors [2.97 (95% CI: 1.88-4.69); P < 0.001]. (A) Baseline characteristics of SARS-CoV-2 positive participants. (B) Heatmap comparing FLU-PRO response in each participant. (C) Principal component analysis followed by k-means clustering identified three groups of participants. (D) Crude and adjusted association of identified cluster with hospitalization. Conclusion Our findings have identified three distinct groups with early-symptom phenotypes. With further validation of the clusters’ significance, this tool could be used to improve COVID-19 prognosis in a precision medicine framework and may assist in patient triaging and clinical decision-making. Disclaimer Disclosures David A. Lindholm, MD, American Board of Internal Medicine (Individual(s) Involved: Self): Member of Auxiliary R&D Infectious Disease Item-Writer Task Force. No financial support received. No exam questions will be disclosed ., Other Financial or Material Support Ryan C. Maves, MD, EMD Serono (Advisor or Review Panel member)Heron Therapeutics (Advisor or Review Panel member) Simon Pollett, MBBS, Astra Zeneca (Other Financial or Material Support, HJF, in support of USU IDCRP, funded under a CRADA to augment the conduct of an unrelated Phase III COVID-19 vaccine trial sponsored by AstraZeneca as part of USG response (unrelated work))" @default.
- W4200190069 created "2021-12-31" @default.
- W4200190069 creator A5000848132 @default.
- W4200190069 creator A5003637667 @default.
- W4200190069 creator A5007293184 @default.
- W4200190069 creator A5007323855 @default.
- W4200190069 creator A5007853642 @default.
- W4200190069 creator A5010911816 @default.
- W4200190069 creator A5016999436 @default.
- W4200190069 creator A5018145464 @default.
- W4200190069 creator A5026156865 @default.
- W4200190069 creator A5031260230 @default.
- W4200190069 creator A5034933541 @default.
- W4200190069 creator A5044388477 @default.
- W4200190069 creator A5045602329 @default.
- W4200190069 creator A5059548038 @default.
- W4200190069 creator A5063248199 @default.
- W4200190069 creator A5065172783 @default.
- W4200190069 creator A5076487264 @default.
- W4200190069 creator A5079685383 @default.
- W4200190069 creator A5087034786 @default.
- W4200190069 creator A5089240637 @default.
- W4200190069 date "2021-11-01" @default.
- W4200190069 modified "2023-10-16" @default.
- W4200190069 title "458. A Machine Learning Approach Identifies Distinct Early-Symptom Cluster Phenotypes Which Correlate with Severe SARS-CoV-2 Outcomes" @default.
- W4200190069 doi "https://doi.org/10.1093/ofid/ofab466.657" @default.
- W4200190069 hasPublicationYear "2021" @default.
- W4200190069 type Work @default.
- W4200190069 citedByCount "0" @default.
- W4200190069 crossrefType "journal-article" @default.
- W4200190069 hasAuthorship W4200190069A5000848132 @default.
- W4200190069 hasAuthorship W4200190069A5003637667 @default.
- W4200190069 hasAuthorship W4200190069A5007293184 @default.
- W4200190069 hasAuthorship W4200190069A5007323855 @default.
- W4200190069 hasAuthorship W4200190069A5007853642 @default.
- W4200190069 hasAuthorship W4200190069A5010911816 @default.
- W4200190069 hasAuthorship W4200190069A5016999436 @default.
- W4200190069 hasAuthorship W4200190069A5018145464 @default.
- W4200190069 hasAuthorship W4200190069A5026156865 @default.
- W4200190069 hasAuthorship W4200190069A5031260230 @default.
- W4200190069 hasAuthorship W4200190069A5034933541 @default.
- W4200190069 hasAuthorship W4200190069A5044388477 @default.
- W4200190069 hasAuthorship W4200190069A5045602329 @default.
- W4200190069 hasAuthorship W4200190069A5059548038 @default.
- W4200190069 hasAuthorship W4200190069A5063248199 @default.
- W4200190069 hasAuthorship W4200190069A5065172783 @default.
- W4200190069 hasAuthorship W4200190069A5076487264 @default.
- W4200190069 hasAuthorship W4200190069A5079685383 @default.
- W4200190069 hasAuthorship W4200190069A5087034786 @default.
- W4200190069 hasAuthorship W4200190069A5089240637 @default.
- W4200190069 hasBestOaLocation W42001900691 @default.
- W4200190069 hasConcept C107130276 @default.
- W4200190069 hasConcept C119060515 @default.
- W4200190069 hasConcept C126322002 @default.
- W4200190069 hasConcept C151956035 @default.
- W4200190069 hasConcept C164866538 @default.
- W4200190069 hasConcept C199360897 @default.
- W4200190069 hasConcept C2779134260 @default.
- W4200190069 hasConcept C3008058167 @default.
- W4200190069 hasConcept C41008148 @default.
- W4200190069 hasConcept C524204448 @default.
- W4200190069 hasConcept C71924100 @default.
- W4200190069 hasConcept C72563966 @default.
- W4200190069 hasConcept C89623803 @default.
- W4200190069 hasConceptScore W4200190069C107130276 @default.
- W4200190069 hasConceptScore W4200190069C119060515 @default.
- W4200190069 hasConceptScore W4200190069C126322002 @default.
- W4200190069 hasConceptScore W4200190069C151956035 @default.
- W4200190069 hasConceptScore W4200190069C164866538 @default.
- W4200190069 hasConceptScore W4200190069C199360897 @default.
- W4200190069 hasConceptScore W4200190069C2779134260 @default.
- W4200190069 hasConceptScore W4200190069C3008058167 @default.
- W4200190069 hasConceptScore W4200190069C41008148 @default.
- W4200190069 hasConceptScore W4200190069C524204448 @default.
- W4200190069 hasConceptScore W4200190069C71924100 @default.
- W4200190069 hasConceptScore W4200190069C72563966 @default.
- W4200190069 hasConceptScore W4200190069C89623803 @default.
- W4200190069 hasIssue "Supplement_1" @default.
- W4200190069 hasLocation W42001900691 @default.
- W4200190069 hasLocation W42001900692 @default.
- W4200190069 hasOpenAccess W4200190069 @default.
- W4200190069 hasPrimaryLocation W42001900691 @default.
- W4200190069 hasRelatedWork W2061253854 @default.
- W4200190069 hasRelatedWork W2603773853 @default.
- W4200190069 hasRelatedWork W2971392718 @default.
- W4200190069 hasRelatedWork W3048644831 @default.
- W4200190069 hasRelatedWork W3120887007 @default.
- W4200190069 hasRelatedWork W3162511055 @default.
- W4200190069 hasRelatedWork W3169409437 @default.
- W4200190069 hasRelatedWork W3169715394 @default.
- W4200190069 hasRelatedWork W3214493312 @default.
- W4200190069 hasRelatedWork W4381942459 @default.
- W4200190069 hasVolume "8" @default.
- W4200190069 isParatext "false" @default.
- W4200190069 isRetracted "false" @default.
- W4200190069 workType "article" @default.