Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200192952> ?p ?o ?g. }
- W4200192952 endingPage "1" @default.
- W4200192952 startingPage "1" @default.
- W4200192952 abstract "CircRNAs have a stable structure, which gives them a higher tolerance to nucleases. Therefore, the properties of circular RNAs are beneficial in disease diagnosis. However, there are few known associations between circRNAs and disease. Biological experiments identify new associations is time-consuming and high-cost. As a result, there is a need of building efficient and achievable computation models to predict potential circRNA-disease associations. In this paper, we design a novel convolution neural networks framework(DMFCNNCD) to learn features from deep matrix factorization to predict circRNA-disease associations. Firstly, we decompose the circRNA-disease association matrix to obtain the original features of the disease and circRNA, and use the mapping module to extract potential nonlinear features. Then, we integrate it with the similarity information to form a training set. Finally, we apply convolution neural networks to predict the unknown association between circRNAs and diseases. The five-fold cross-validation on various experiments shows that our method can predict circRNA-disease association and outperforms state of the art methods." @default.
- W4200192952 created "2021-12-31" @default.
- W4200192952 creator A5003156605 @default.
- W4200192952 creator A5034374784 @default.
- W4200192952 creator A5051670778 @default.
- W4200192952 creator A5064185915 @default.
- W4200192952 creator A5064827993 @default.
- W4200192952 creator A5069386916 @default.
- W4200192952 date "2021-01-01" @default.
- W4200192952 modified "2023-09-27" @default.
- W4200192952 title "Convolution Neural Networks Using Deep Matrix Factorization for Predicting circRNA-Disease Association" @default.
- W4200192952 cites W1496181682 @default.
- W4200192952 cites W1521279639 @default.
- W4200192952 cites W2017919052 @default.
- W4200192952 cites W2141222510 @default.
- W4200192952 cites W2152719653 @default.
- W4200192952 cites W2159092541 @default.
- W4200192952 cites W2345421812 @default.
- W4200192952 cites W2510950741 @default.
- W4200192952 cites W2517463990 @default.
- W4200192952 cites W2594312752 @default.
- W4200192952 cites W2740920897 @default.
- W4200192952 cites W2756804923 @default.
- W4200192952 cites W2764294957 @default.
- W4200192952 cites W2781567469 @default.
- W4200192952 cites W2783982109 @default.
- W4200192952 cites W2789673782 @default.
- W4200192952 cites W2790953059 @default.
- W4200192952 cites W2795546864 @default.
- W4200192952 cites W2795651309 @default.
- W4200192952 cites W2799307902 @default.
- W4200192952 cites W2800766678 @default.
- W4200192952 cites W2807602500 @default.
- W4200192952 cites W2844810249 @default.
- W4200192952 cites W2898991725 @default.
- W4200192952 cites W2899436082 @default.
- W4200192952 cites W2908731377 @default.
- W4200192952 cites W2909189346 @default.
- W4200192952 cites W2909637325 @default.
- W4200192952 cites W2913760105 @default.
- W4200192952 cites W2918598256 @default.
- W4200192952 cites W2942090527 @default.
- W4200192952 cites W2949946343 @default.
- W4200192952 cites W2956147320 @default.
- W4200192952 cites W2980767508 @default.
- W4200192952 cites W2981316968 @default.
- W4200192952 cites W2991743543 @default.
- W4200192952 cites W2998399699 @default.
- W4200192952 cites W3010550571 @default.
- W4200192952 cites W3024208822 @default.
- W4200192952 cites W3025741173 @default.
- W4200192952 cites W3034046925 @default.
- W4200192952 cites W3041434156 @default.
- W4200192952 cites W3049413863 @default.
- W4200192952 cites W3090491025 @default.
- W4200192952 cites W3121554924 @default.
- W4200192952 cites W3125591035 @default.
- W4200192952 cites W3130970563 @default.
- W4200192952 cites W3158251467 @default.
- W4200192952 cites W3174982942 @default.
- W4200192952 cites W611910056 @default.
- W4200192952 cites W762501897 @default.
- W4200192952 doi "https://doi.org/10.1109/tcbb.2021.3138339" @default.
- W4200192952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34951853" @default.
- W4200192952 hasPublicationYear "2021" @default.
- W4200192952 type Work @default.
- W4200192952 citedByCount "2" @default.
- W4200192952 countsByYear W42001929522022 @default.
- W4200192952 countsByYear W42001929522023 @default.
- W4200192952 crossrefType "journal-article" @default.
- W4200192952 hasAuthorship W4200192952A5003156605 @default.
- W4200192952 hasAuthorship W4200192952A5034374784 @default.
- W4200192952 hasAuthorship W4200192952A5051670778 @default.
- W4200192952 hasAuthorship W4200192952A5064185915 @default.
- W4200192952 hasAuthorship W4200192952A5064827993 @default.
- W4200192952 hasAuthorship W4200192952A5069386916 @default.
- W4200192952 hasBestOaLocation W42001929521 @default.
- W4200192952 hasConcept C103278499 @default.
- W4200192952 hasConcept C108583219 @default.
- W4200192952 hasConcept C115961682 @default.
- W4200192952 hasConcept C119857082 @default.
- W4200192952 hasConcept C121332964 @default.
- W4200192952 hasConcept C124101348 @default.
- W4200192952 hasConcept C152671427 @default.
- W4200192952 hasConcept C153180895 @default.
- W4200192952 hasConcept C154945302 @default.
- W4200192952 hasConcept C158693339 @default.
- W4200192952 hasConcept C177264268 @default.
- W4200192952 hasConcept C199360897 @default.
- W4200192952 hasConcept C41008148 @default.
- W4200192952 hasConcept C42355184 @default.
- W4200192952 hasConcept C45347329 @default.
- W4200192952 hasConcept C50644808 @default.
- W4200192952 hasConcept C62520636 @default.
- W4200192952 hasConcept C70721500 @default.
- W4200192952 hasConcept C86803240 @default.
- W4200192952 hasConceptScore W4200192952C103278499 @default.
- W4200192952 hasConceptScore W4200192952C108583219 @default.