Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200197970> ?p ?o ?g. }
- W4200197970 endingPage "333" @default.
- W4200197970 startingPage "327" @default.
- W4200197970 abstract "Renal cell carcinoma (RCC) is often found incidentally in asymptomatic individuals undergoing abdominal computed tomography (CT) examinations. The purpose of our study is to develop a deep learning-based algorithm for fully automated detection of small (≤4 cm) RCCs in contrast-enhanced CT images using a multicenter database and to evaluate its performance.For the algorithmic detection of RCC, we retrospectively selected contrast-enhanced CT images of patients with histologically confirmed single RCC with a tumor diameter of 4 cm or less between January 2005 and May 2020 from 7 centers in the Japan Medical Image Database. A total of 453 patients from 6 centers were selected as dataset A, and 132 patients from 1 center were selected as dataset B. Dataset A was used for training and internal validation. Dataset B was used only for external validation. Nephrogenic phase images of multiphase CT or single-phase postcontrast CT images were used. Our algorithm consisted of 2-step segmentation models, kidney segmentation and tumor segmentation. For internal validation with dataset A, 10-fold cross-validation was applied. For external validation, the models trained with dataset A were tested on dataset B. The detection performance of the models was evaluated using accuracy, sensitivity, specificity, and the area under the curve (AUC).The mean ± SD diameters of RCCs in dataset A and dataset B were 2.67 ± 0.77 cm and 2.64 ± 0.78 cm, respectively. Our algorithm yielded an accuracy, sensitivity, and specificity of 88.3%, 84.3%, and 92.3%, respectively, with dataset A and 87.5%, 84.8%, and 90.2%, respectively, with dataset B. The AUC of the algorithm with dataset A and dataset B was 0.930 and 0.933, respectively.The proposed deep learning-based algorithm achieved high accuracy, sensitivity, specificity, and AUC for the detection of small RCCs with both internal and external validations, suggesting that this algorithm could contribute to the early detection of small RCCs." @default.
- W4200197970 created "2021-12-31" @default.
- W4200197970 creator A5016809176 @default.
- W4200197970 creator A5031103225 @default.
- W4200197970 creator A5032239438 @default.
- W4200197970 creator A5037573471 @default.
- W4200197970 creator A5039853999 @default.
- W4200197970 creator A5060878563 @default.
- W4200197970 creator A5062496531 @default.
- W4200197970 creator A5064419838 @default.
- W4200197970 creator A5065244290 @default.
- W4200197970 creator A5072478108 @default.
- W4200197970 creator A5078931094 @default.
- W4200197970 creator A5083771279 @default.
- W4200197970 creator A5086644570 @default.
- W4200197970 date "2021-12-21" @default.
- W4200197970 modified "2023-10-18" @default.
- W4200197970 title "Deep Learning Algorithm for Fully Automated Detection of Small (≤4 cm) Renal Cell Carcinoma in Contrast-Enhanced Computed Tomography Using a Multicenter Database" @default.
- W4200197970 cites W1970836329 @default.
- W4200197970 cites W1977237317 @default.
- W4200197970 cites W1997733825 @default.
- W4200197970 cites W2071061528 @default.
- W4200197970 cites W2072775398 @default.
- W4200197970 cites W2073574375 @default.
- W4200197970 cites W2086445289 @default.
- W4200197970 cites W2094159831 @default.
- W4200197970 cites W2097096070 @default.
- W4200197970 cites W2123344349 @default.
- W4200197970 cites W2127890285 @default.
- W4200197970 cites W2129407204 @default.
- W4200197970 cites W2156943692 @default.
- W4200197970 cites W2169508072 @default.
- W4200197970 cites W2397615757 @default.
- W4200197970 cites W2680371805 @default.
- W4200197970 cites W2884436187 @default.
- W4200197970 cites W2889646458 @default.
- W4200197970 cites W2891612001 @default.
- W4200197970 cites W2897204169 @default.
- W4200197970 cites W2897917006 @default.
- W4200197970 cites W3017774855 @default.
- W4200197970 cites W3025192708 @default.
- W4200197970 cites W3046874697 @default.
- W4200197970 cites W3092544457 @default.
- W4200197970 cites W3119856975 @default.
- W4200197970 cites W3167522509 @default.
- W4200197970 cites W4237816489 @default.
- W4200197970 doi "https://doi.org/10.1097/rli.0000000000000842" @default.
- W4200197970 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34935652" @default.
- W4200197970 hasPublicationYear "2021" @default.
- W4200197970 type Work @default.
- W4200197970 citedByCount "6" @default.
- W4200197970 countsByYear W42001979702022 @default.
- W4200197970 countsByYear W42001979702023 @default.
- W4200197970 crossrefType "journal-article" @default.
- W4200197970 hasAuthorship W4200197970A5016809176 @default.
- W4200197970 hasAuthorship W4200197970A5031103225 @default.
- W4200197970 hasAuthorship W4200197970A5032239438 @default.
- W4200197970 hasAuthorship W4200197970A5037573471 @default.
- W4200197970 hasAuthorship W4200197970A5039853999 @default.
- W4200197970 hasAuthorship W4200197970A5060878563 @default.
- W4200197970 hasAuthorship W4200197970A5062496531 @default.
- W4200197970 hasAuthorship W4200197970A5064419838 @default.
- W4200197970 hasAuthorship W4200197970A5065244290 @default.
- W4200197970 hasAuthorship W4200197970A5072478108 @default.
- W4200197970 hasAuthorship W4200197970A5078931094 @default.
- W4200197970 hasAuthorship W4200197970A5083771279 @default.
- W4200197970 hasAuthorship W4200197970A5086644570 @default.
- W4200197970 hasConcept C11413529 @default.
- W4200197970 hasConcept C126838900 @default.
- W4200197970 hasConcept C142724271 @default.
- W4200197970 hasConcept C154945302 @default.
- W4200197970 hasConcept C2776502983 @default.
- W4200197970 hasConcept C2777472916 @default.
- W4200197970 hasConcept C2777910003 @default.
- W4200197970 hasConcept C2989005 @default.
- W4200197970 hasConcept C41008148 @default.
- W4200197970 hasConcept C71924100 @default.
- W4200197970 hasConcept C89600930 @default.
- W4200197970 hasConceptScore W4200197970C11413529 @default.
- W4200197970 hasConceptScore W4200197970C126838900 @default.
- W4200197970 hasConceptScore W4200197970C142724271 @default.
- W4200197970 hasConceptScore W4200197970C154945302 @default.
- W4200197970 hasConceptScore W4200197970C2776502983 @default.
- W4200197970 hasConceptScore W4200197970C2777472916 @default.
- W4200197970 hasConceptScore W4200197970C2777910003 @default.
- W4200197970 hasConceptScore W4200197970C2989005 @default.
- W4200197970 hasConceptScore W4200197970C41008148 @default.
- W4200197970 hasConceptScore W4200197970C71924100 @default.
- W4200197970 hasConceptScore W4200197970C89600930 @default.
- W4200197970 hasIssue "5" @default.
- W4200197970 hasLocation W42001979701 @default.
- W4200197970 hasLocation W42001979702 @default.
- W4200197970 hasOpenAccess W4200197970 @default.
- W4200197970 hasPrimaryLocation W42001979701 @default.
- W4200197970 hasRelatedWork W1995188757 @default.
- W4200197970 hasRelatedWork W2016679923 @default.
- W4200197970 hasRelatedWork W2057721052 @default.
- W4200197970 hasRelatedWork W2116001782 @default.