Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200200324> ?p ?o ?g. }
- W4200200324 abstract "Abstract Selecting the best model of sequence evolution for a multiple-sequence-alignment (MSA) constitutes the first step of phylogenetic tree reconstruction. Common approaches for inferring nucleotide models typically apply maximum likelihood (ML) methods, with discrimination between models determined by one of several information criteria. This requires tree reconstruction and optimisation which can be computationally expensive. We demonstrate that neural networks can be used to perform model selection, without the need to reconstruct trees, optimise parameters, or calculate likelihoods. We introduce ModelRevelator, a model selection tool underpinned by two deep neural networks. The first neural network, NNmodelfind, recommends one of six commonly used models of sequence evolution, ranging in complexity from Jukes and Cantor to General Time Reversible. The second, NNalphafind, recommends whether or not a Γ --distributed rate heterogeneous model should be incorporated, and if so, provides an estimate of the shape parameter, α. Users can simply input an MSA into ModelRevelator, and swiftly receive output recommending the evolutionary model, inclusive of the presence or absence of rate heterogeneity, and an estimate of α. We show that ModelRevelator performs comparably with likelihood-based methods and the recently published machine learning method ModelTeller over a wide range of parameter settings, with significant potential savings in computational effort. Further, we show that this performance is not restricted to the alignments on which the networks were trained, but is maintained even on unseen empirical data. We expect that ModelRevelator will provide a valuable alternative for phylogeneticists, especially where traditional methods of model selection are computationally prohibitive." @default.
- W4200200324 created "2021-12-31" @default.
- W4200200324 creator A5008754104 @default.
- W4200200324 creator A5021668463 @default.
- W4200200324 creator A5062707797 @default.
- W4200200324 creator A5081890095 @default.
- W4200200324 creator A5085983122 @default.
- W4200200324 date "2021-12-23" @default.
- W4200200324 modified "2023-10-06" @default.
- W4200200324 title "ModelRevelator: Fast phylogenetic model estimation via deep learning" @default.
- W4200200324 cites W1525734744 @default.
- W4200200324 cites W1677182931 @default.
- W4200200324 cites W1969042907 @default.
- W4200200324 cites W2009596137 @default.
- W4200200324 cites W2013464178 @default.
- W4200200324 cites W2060425093 @default.
- W4200200324 cites W2062447320 @default.
- W4200200324 cites W2065236031 @default.
- W4200200324 cites W2065461553 @default.
- W4200200324 cites W2066289589 @default.
- W4200200324 cites W2080723129 @default.
- W4200200324 cites W2082928585 @default.
- W4200200324 cites W2101846955 @default.
- W4200200324 cites W2102424972 @default.
- W4200200324 cites W2111647009 @default.
- W4200200324 cites W2120611093 @default.
- W4200200324 cites W2122302865 @default.
- W4200200324 cites W2124790653 @default.
- W4200200324 cites W2125359798 @default.
- W4200200324 cites W2133870991 @default.
- W4200200324 cites W2137219016 @default.
- W4200200324 cites W2144654387 @default.
- W4200200324 cites W2144775551 @default.
- W4200200324 cites W2146081698 @default.
- W4200200324 cites W2162264429 @default.
- W4200200324 cites W2178635535 @default.
- W4200200324 cites W2194775991 @default.
- W4200200324 cites W2221443338 @default.
- W4200200324 cites W2230749025 @default.
- W4200200324 cites W2601025444 @default.
- W4200200324 cites W2614081736 @default.
- W4200200324 cites W2779290241 @default.
- W4200200324 cites W2883251903 @default.
- W4200200324 cites W2915370094 @default.
- W4200200324 cites W2919115771 @default.
- W4200200324 cites W2929108854 @default.
- W4200200324 cites W2973043487 @default.
- W4200200324 cites W2987894624 @default.
- W4200200324 cites W2996966823 @default.
- W4200200324 cites W3005235420 @default.
- W4200200324 cites W3037064900 @default.
- W4200200324 cites W3041567587 @default.
- W4200200324 cites W4205745220 @default.
- W4200200324 doi "https://doi.org/10.1101/2021.12.22.473813" @default.
- W4200200324 hasPublicationYear "2021" @default.
- W4200200324 type Work @default.
- W4200200324 citedByCount "3" @default.
- W4200200324 countsByYear W42002003242022 @default.
- W4200200324 countsByYear W42002003242023 @default.
- W4200200324 crossrefType "posted-content" @default.
- W4200200324 hasAuthorship W4200200324A5008754104 @default.
- W4200200324 hasAuthorship W4200200324A5021668463 @default.
- W4200200324 hasAuthorship W4200200324A5062707797 @default.
- W4200200324 hasAuthorship W4200200324A5081890095 @default.
- W4200200324 hasAuthorship W4200200324A5085983122 @default.
- W4200200324 hasBestOaLocation W42002003241 @default.
- W4200200324 hasConcept C104317684 @default.
- W4200200324 hasConcept C105795698 @default.
- W4200200324 hasConcept C113174947 @default.
- W4200200324 hasConcept C119857082 @default.
- W4200200324 hasConcept C124101348 @default.
- W4200200324 hasConcept C134306372 @default.
- W4200200324 hasConcept C154945302 @default.
- W4200200324 hasConcept C159985019 @default.
- W4200200324 hasConcept C185592680 @default.
- W4200200324 hasConcept C192562407 @default.
- W4200200324 hasConcept C193252679 @default.
- W4200200324 hasConcept C204323151 @default.
- W4200200324 hasConcept C2778112365 @default.
- W4200200324 hasConcept C2984842247 @default.
- W4200200324 hasConcept C33923547 @default.
- W4200200324 hasConcept C41008148 @default.
- W4200200324 hasConcept C49781872 @default.
- W4200200324 hasConcept C50644808 @default.
- W4200200324 hasConcept C54355233 @default.
- W4200200324 hasConcept C55493867 @default.
- W4200200324 hasConcept C81917197 @default.
- W4200200324 hasConcept C86803240 @default.
- W4200200324 hasConcept C93959086 @default.
- W4200200324 hasConceptScore W4200200324C104317684 @default.
- W4200200324 hasConceptScore W4200200324C105795698 @default.
- W4200200324 hasConceptScore W4200200324C113174947 @default.
- W4200200324 hasConceptScore W4200200324C119857082 @default.
- W4200200324 hasConceptScore W4200200324C124101348 @default.
- W4200200324 hasConceptScore W4200200324C134306372 @default.
- W4200200324 hasConceptScore W4200200324C154945302 @default.
- W4200200324 hasConceptScore W4200200324C159985019 @default.
- W4200200324 hasConceptScore W4200200324C185592680 @default.
- W4200200324 hasConceptScore W4200200324C192562407 @default.
- W4200200324 hasConceptScore W4200200324C193252679 @default.