Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200201619> ?p ?o ?g. }
- W4200201619 endingPage "103663" @default.
- W4200201619 startingPage "103663" @default.
- W4200201619 abstract "We design a wisdom-of-the-crowds GRN inference pipeline and couple it to complex network analysis to understand the organizational principles governing gene regulation in long-lived glp-1/Notch Caenorhabditis elegans. The GRN has three layers (input, core, and output) and is topologically equivalent to bow-tie/hourglass structures prevalent among metabolic networks. To assess the functional importance of structural layers, we screened 80% of regulators and discovered 50 new aging genes, 86% with human orthologues. Genes essential for longevity-including ones involved in insulin-like signaling (ILS)-are at the core, indicating that GRN's structure is predictive of functionality. We used in vivo reporters and a novel functional network covering 5,497 genetic interactions to make mechanistic predictions. We used genetic epistasis to test some of these predictions, uncovering a novel transcriptional regulator, sup-37, that works alongside DAF-16/FOXO. We present a framework with predictive power that can accelerate discovery in C. elegans and potentially humans." @default.
- W4200201619 created "2021-12-31" @default.
- W4200201619 creator A5002325739 @default.
- W4200201619 creator A5007407500 @default.
- W4200201619 creator A5010451885 @default.
- W4200201619 creator A5011588266 @default.
- W4200201619 creator A5054106100 @default.
- W4200201619 creator A5062410860 @default.
- W4200201619 creator A5063084321 @default.
- W4200201619 creator A5066726255 @default.
- W4200201619 creator A5071125135 @default.
- W4200201619 creator A5074855536 @default.
- W4200201619 creator A5075685970 @default.
- W4200201619 creator A5090740939 @default.
- W4200201619 date "2022-01-01" @default.
- W4200201619 modified "2023-09-29" @default.
- W4200201619 title "Gene regulatory network inference in long-lived C. elegans reveals modular properties that are predictive of novel aging genes" @default.
- W4200201619 cites W1486595217 @default.
- W4200201619 cites W1507555475 @default.
- W4200201619 cites W1619158228 @default.
- W4200201619 cites W1668115650 @default.
- W4200201619 cites W1712882224 @default.
- W4200201619 cites W1877188956 @default.
- W4200201619 cites W1921244251 @default.
- W4200201619 cites W1964701096 @default.
- W4200201619 cites W1965911703 @default.
- W4200201619 cites W1994321911 @default.
- W4200201619 cites W2002709996 @default.
- W4200201619 cites W2013326913 @default.
- W4200201619 cites W2033169664 @default.
- W4200201619 cites W2033908049 @default.
- W4200201619 cites W2038279476 @default.
- W4200201619 cites W2038963685 @default.
- W4200201619 cites W2041042514 @default.
- W4200201619 cites W2045949302 @default.
- W4200201619 cites W2052815101 @default.
- W4200201619 cites W2057316466 @default.
- W4200201619 cites W2058484936 @default.
- W4200201619 cites W2072256916 @default.
- W4200201619 cites W2073841074 @default.
- W4200201619 cites W2075998050 @default.
- W4200201619 cites W2083501474 @default.
- W4200201619 cites W2087147505 @default.
- W4200201619 cites W2087984446 @default.
- W4200201619 cites W2095785516 @default.
- W4200201619 cites W2099551325 @default.
- W4200201619 cites W2102278945 @default.
- W4200201619 cites W2102619694 @default.
- W4200201619 cites W2109384743 @default.
- W4200201619 cites W2111822899 @default.
- W4200201619 cites W2112128513 @default.
- W4200201619 cites W2116868916 @default.
- W4200201619 cites W2117468188 @default.
- W4200201619 cites W2118258530 @default.
- W4200201619 cites W2120661262 @default.
- W4200201619 cites W2136926904 @default.
- W4200201619 cites W2142410561 @default.
- W4200201619 cites W2142433339 @default.
- W4200201619 cites W2149863676 @default.
- W4200201619 cites W2152941516 @default.
- W4200201619 cites W2157617952 @default.
- W4200201619 cites W2159675211 @default.
- W4200201619 cites W2166146113 @default.
- W4200201619 cites W2169148563 @default.
- W4200201619 cites W2178240050 @default.
- W4200201619 cites W2179438025 @default.
- W4200201619 cites W2280966365 @default.
- W4200201619 cites W2287479634 @default.
- W4200201619 cites W2295392580 @default.
- W4200201619 cites W2308158383 @default.
- W4200201619 cites W2412841237 @default.
- W4200201619 cites W2414217491 @default.
- W4200201619 cites W2507936136 @default.
- W4200201619 cites W2522417827 @default.
- W4200201619 cites W2526226642 @default.
- W4200201619 cites W2537744338 @default.
- W4200201619 cites W2767517408 @default.
- W4200201619 cites W2768499679 @default.
- W4200201619 cites W2777064170 @default.
- W4200201619 cites W2799762305 @default.
- W4200201619 cites W2811224217 @default.
- W4200201619 cites W2811295899 @default.
- W4200201619 cites W2893014212 @default.
- W4200201619 cites W2895842572 @default.
- W4200201619 cites W2913894506 @default.
- W4200201619 cites W2914654664 @default.
- W4200201619 cites W2950599556 @default.
- W4200201619 cites W2951644416 @default.
- W4200201619 cites W3100379134 @default.
- W4200201619 cites W4210659358 @default.
- W4200201619 cites W4245378753 @default.
- W4200201619 cites W787314263 @default.
- W4200201619 doi "https://doi.org/10.1016/j.isci.2021.103663" @default.
- W4200201619 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35036864" @default.
- W4200201619 hasPublicationYear "2022" @default.
- W4200201619 type Work @default.
- W4200201619 citedByCount "4" @default.
- W4200201619 countsByYear W42002016192022 @default.