Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200202353> ?p ?o ?g. }
- W4200202353 endingPage "177" @default.
- W4200202353 startingPage "160" @default.
- W4200202353 abstract "ABSTRACT To reduce both the computational cost of probabilistic inversions and the ill‐posedness of geophysical problems, model and data spaces can be reparameterized into low‐dimensional domains where the inverse solution can be computed more efficiently. Among the many compression methods, deep learning algorithms based on deep generative models provide an efficient approach for model and data space reduction. We present a probabilistic electrical resistivity tomography inversion in which the data and model spaces are compressed through deep convolutional variational autoencoders, while the optimization procedure is driven by the ensemble smoother with multiple data assimilation, an iterative ensemble‐based algorithm. This method iteratively updates an initial ensemble of models that are generated according to a previously defined prior model. The inversion outcome consists of the most likely solution and a set of realizations of the variables of interest from which the posterior uncertainties can be numerically evaluated. We test the method on synthetic data computed over a schematic subsurface model, and then we apply the inversion to field measurements. The model predictions and the uncertainty assessments provided by the presented approach are also compared with the results of a Markov Chain Monte Carlo sampling working in the compressed domains, a gradient‐based algorithm and with the outcomes of an ensemble‐based inversion running in the uncompressed spaces. A finite‐element code constitutes the forward operator. Our experiments show that the implemented inversion provides most likely solutions and uncertainty quantifications comparable to those yielded by the ensemble‐based inversion running in the full model and data spaces, and the Markov Chain Monte Carlo sampling, but with a significant reduction of the computational cost." @default.
- W4200202353 created "2021-12-31" @default.
- W4200202353 creator A5002869321 @default.
- W4200202353 creator A5043703686 @default.
- W4200202353 creator A5056618135 @default.
- W4200202353 creator A5004321979 @default.
- W4200202353 date "2022-01-13" @default.
- W4200202353 modified "2023-10-16" @default.
- W4200202353 title "Stochastic electrical resistivity tomography with ensemble smoother and deep convolutional autoencoders" @default.
- W4200202353 cites W1034159276 @default.
- W4200202353 cites W1538120041 @default.
- W4200202353 cites W1583362856 @default.
- W4200202353 cites W2018353504 @default.
- W4200202353 cites W2023025545 @default.
- W4200202353 cites W2069157151 @default.
- W4200202353 cites W2106743671 @default.
- W4200202353 cites W2144676156 @default.
- W4200202353 cites W2173126837 @default.
- W4200202353 cites W2508594688 @default.
- W4200202353 cites W2547561522 @default.
- W4200202353 cites W2765740015 @default.
- W4200202353 cites W2783586977 @default.
- W4200202353 cites W2796570495 @default.
- W4200202353 cites W2883423724 @default.
- W4200202353 cites W2890883963 @default.
- W4200202353 cites W2943474355 @default.
- W4200202353 cites W2947207002 @default.
- W4200202353 cites W2964169269 @default.
- W4200202353 cites W2969410691 @default.
- W4200202353 cites W2972265906 @default.
- W4200202353 cites W2972839135 @default.
- W4200202353 cites W3000574968 @default.
- W4200202353 cites W3001577681 @default.
- W4200202353 cites W3014185327 @default.
- W4200202353 cites W3014864856 @default.
- W4200202353 cites W3033557345 @default.
- W4200202353 cites W3034134504 @default.
- W4200202353 cites W3035458261 @default.
- W4200202353 cites W3039262375 @default.
- W4200202353 cites W3042615087 @default.
- W4200202353 cites W3080352642 @default.
- W4200202353 cites W3082717723 @default.
- W4200202353 cites W3095274704 @default.
- W4200202353 cites W3123551284 @default.
- W4200202353 cites W3128950974 @default.
- W4200202353 cites W3153598479 @default.
- W4200202353 cites W3160270913 @default.
- W4200202353 cites W3161955906 @default.
- W4200202353 cites W3190174881 @default.
- W4200202353 cites W3198920781 @default.
- W4200202353 cites W4249731213 @default.
- W4200202353 doi "https://doi.org/10.1002/nsg.12194" @default.
- W4200202353 hasPublicationYear "2022" @default.
- W4200202353 type Work @default.
- W4200202353 citedByCount "1" @default.
- W4200202353 countsByYear W42002023532022 @default.
- W4200202353 crossrefType "journal-article" @default.
- W4200202353 hasAuthorship W4200202353A5002869321 @default.
- W4200202353 hasAuthorship W4200202353A5004321979 @default.
- W4200202353 hasAuthorship W4200202353A5043703686 @default.
- W4200202353 hasAuthorship W4200202353A5056618135 @default.
- W4200202353 hasBestOaLocation W42002023532 @default.
- W4200202353 hasConcept C105795698 @default.
- W4200202353 hasConcept C107673813 @default.
- W4200202353 hasConcept C108583219 @default.
- W4200202353 hasConcept C109007969 @default.
- W4200202353 hasConcept C111350023 @default.
- W4200202353 hasConcept C11413529 @default.
- W4200202353 hasConcept C119599485 @default.
- W4200202353 hasConcept C121332964 @default.
- W4200202353 hasConcept C126255220 @default.
- W4200202353 hasConcept C127313418 @default.
- W4200202353 hasConcept C127413603 @default.
- W4200202353 hasConcept C134306372 @default.
- W4200202353 hasConcept C135252773 @default.
- W4200202353 hasConcept C151730666 @default.
- W4200202353 hasConcept C153294291 @default.
- W4200202353 hasConcept C154945302 @default.
- W4200202353 hasConcept C160920958 @default.
- W4200202353 hasConcept C1893757 @default.
- W4200202353 hasConcept C19499675 @default.
- W4200202353 hasConcept C24552861 @default.
- W4200202353 hasConcept C33923547 @default.
- W4200202353 hasConcept C41008148 @default.
- W4200202353 hasConcept C49937458 @default.
- W4200202353 hasConcept C60591178 @default.
- W4200202353 hasConcept C69990965 @default.
- W4200202353 hasConceptScore W4200202353C105795698 @default.
- W4200202353 hasConceptScore W4200202353C107673813 @default.
- W4200202353 hasConceptScore W4200202353C108583219 @default.
- W4200202353 hasConceptScore W4200202353C109007969 @default.
- W4200202353 hasConceptScore W4200202353C111350023 @default.
- W4200202353 hasConceptScore W4200202353C11413529 @default.
- W4200202353 hasConceptScore W4200202353C119599485 @default.
- W4200202353 hasConceptScore W4200202353C121332964 @default.
- W4200202353 hasConceptScore W4200202353C126255220 @default.
- W4200202353 hasConceptScore W4200202353C127313418 @default.
- W4200202353 hasConceptScore W4200202353C127413603 @default.