Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200203422> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4200203422 endingPage "118" @default.
- W4200203422 startingPage "103" @default.
- W4200203422 abstract "The subject matter of the article is pseudo-random number generators. Random numbers play the important role in cryptography. Using not secure pseudo-random number generators is a very common weakness. It is also a fundamental resource in science and engineering. There are algorithmically generated numbers that are similar to random distributions but are not random, called pseudo-random number generators. In many cases the tasks to be solved are based on the unpredictability of random numbers, which cannot be guaranteed in the case of pseudo-random number generators, true randomness is required. In such situations, we use real random number generators whose source of randomness is unpredictable random events. Quantum Random Number Generators (QRNGs) generate real random numbers based on the inherent randomness of quantum measurements. The goal is to develop a mathematical model of the generator, which generates fast random numbers at a lower cost. At the same time, a high level of randomness is essential. Through quantum mechanics, we can obtain true numbers using the unpredictable behavior of a photon, which is the basis of many modern cryptographic protocols. It is essential to trust cryptographic random number generators to generate only true random numbers. This is why certification methods are needed which will check both the operation of the device and the quality of the random bits generated. The goal of the research is also to develop the model of a hybrid semi self-testing certification method for quantum random number generators (QRNG). The tasks to be solved are to create the mathematical model of a random number generator, which generates the fast random numbers at a lower cost. To create the mathematical model of a hybrid semi self-testing certification method for quantum random number generators. To integrate a hybrid semi self-testing certification method to the hybrid random number generator. the methods used are mathematical optimization and simulation. The following results were obtained: we present the improved hybrid quantum random number generator, which is based on QRNG, which uses the time of arrival of photons. The model of a hybrid semi self-testing certification method for quantum random number generators (QRNG) is offered in the paper. This method combines different types of certification approaches and is rather secure and efficient. Finally, the hybrid certification method is integrated into the model of the new quantum random number generator. Conclusions. The scientific novelty of the results obtained is as follows: 1. The hybrid quantum random number generator is offered, which is based on QRNG, which uses the time of the arrival of photons. It uses the simple version of the detectors with few requirements. The hybrid QRNG produces more than one random bit per the detection of each photon. It is rather efficient and has a high level of randomness. 2. The hybrid semi self-testing certification method for quantum random number generators (QRNG) is offered. The Self-testing, as well as device-independent quantum random number generation methods, are analyzed. The advantages and disadvantages of both methods are identified. Based on the result the hybrid method is offered. 3. The hybrid semi self-testing certification method for quantum random number generators is integrated into the offered model of the quantum random number generator. The paper analyzes its security and efficiency. The paper offers to use the new random number generator in the crypto-schemes." @default.
- W4200203422 created "2021-12-31" @default.
- W4200203422 creator A5006670759 @default.
- W4200203422 creator A5026923377 @default.
- W4200203422 creator A5086525061 @default.
- W4200203422 creator A5089163717 @default.
- W4200203422 date "2021-11-29" @default.
- W4200203422 modified "2023-10-16" @default.
- W4200203422 title "Hybrid quantum random number generator for cryptographic algorithms" @default.
- W4200203422 doi "https://doi.org/10.32620/reks.2021.4.09" @default.
- W4200203422 hasPublicationYear "2021" @default.
- W4200203422 type Work @default.
- W4200203422 citedByCount "2" @default.
- W4200203422 countsByYear W42002034222023 @default.
- W4200203422 crossrefType "journal-article" @default.
- W4200203422 hasAuthorship W4200203422A5006670759 @default.
- W4200203422 hasAuthorship W4200203422A5026923377 @default.
- W4200203422 hasAuthorship W4200203422A5086525061 @default.
- W4200203422 hasAuthorship W4200203422A5089163717 @default.
- W4200203422 hasBestOaLocation W42002034221 @default.
- W4200203422 hasConcept C105795698 @default.
- W4200203422 hasConcept C11413529 @default.
- W4200203422 hasConcept C116643974 @default.
- W4200203422 hasConcept C122123141 @default.
- W4200203422 hasConcept C125112378 @default.
- W4200203422 hasConcept C13929819 @default.
- W4200203422 hasConcept C140642157 @default.
- W4200203422 hasConcept C178489894 @default.
- W4200203422 hasConcept C18017163 @default.
- W4200203422 hasConcept C201866948 @default.
- W4200203422 hasConcept C26263659 @default.
- W4200203422 hasConcept C33923547 @default.
- W4200203422 hasConcept C41008148 @default.
- W4200203422 hasConcept C80444323 @default.
- W4200203422 hasConceptScore W4200203422C105795698 @default.
- W4200203422 hasConceptScore W4200203422C11413529 @default.
- W4200203422 hasConceptScore W4200203422C116643974 @default.
- W4200203422 hasConceptScore W4200203422C122123141 @default.
- W4200203422 hasConceptScore W4200203422C125112378 @default.
- W4200203422 hasConceptScore W4200203422C13929819 @default.
- W4200203422 hasConceptScore W4200203422C140642157 @default.
- W4200203422 hasConceptScore W4200203422C178489894 @default.
- W4200203422 hasConceptScore W4200203422C18017163 @default.
- W4200203422 hasConceptScore W4200203422C201866948 @default.
- W4200203422 hasConceptScore W4200203422C26263659 @default.
- W4200203422 hasConceptScore W4200203422C33923547 @default.
- W4200203422 hasConceptScore W4200203422C41008148 @default.
- W4200203422 hasConceptScore W4200203422C80444323 @default.
- W4200203422 hasIssue "4" @default.
- W4200203422 hasLocation W42002034221 @default.
- W4200203422 hasLocation W42002034222 @default.
- W4200203422 hasOpenAccess W4200203422 @default.
- W4200203422 hasPrimaryLocation W42002034221 @default.
- W4200203422 hasRelatedWork W1991355944 @default.
- W4200203422 hasRelatedWork W2106722351 @default.
- W4200203422 hasRelatedWork W2158367025 @default.
- W4200203422 hasRelatedWork W2360514482 @default.
- W4200203422 hasRelatedWork W2382393574 @default.
- W4200203422 hasRelatedWork W2585863995 @default.
- W4200203422 hasRelatedWork W3191129978 @default.
- W4200203422 hasRelatedWork W3215928906 @default.
- W4200203422 hasRelatedWork W4200203422 @default.
- W4200203422 hasRelatedWork W4318334679 @default.
- W4200203422 isParatext "false" @default.
- W4200203422 isRetracted "false" @default.
- W4200203422 workType "article" @default.