Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200204081> ?p ?o ?g. }
- W4200204081 endingPage "3158" @default.
- W4200204081 startingPage "3158" @default.
- W4200204081 abstract "With the increasing incidence of severe skin diseases, such as skin cancer, endoscopic medical imaging has become urgent for revealing the internal and hidden tissues under the skin. Diagnostic information to help doctors make an accurate diagnosis is provided by endoscopy devices. Nonetheless, most skin diseases have similar features, which make it challenging for dermatologists to diagnose patients accurately. Therefore, machine and deep learning techniques can have a critical role in diagnosing dermatoscopy images and in the accurate early detection of skin diseases. In this study, systems for the early detection of skin lesions were developed. The performance of the machine learning and deep learning was evaluated on two datasets (e.g., the International Skin Imaging Collaboration (ISIC 2018) and Pedro Hispano (PH2)). First, the proposed system was based on hybrid features that were extracted by three algorithms: local binary pattern (LBP), gray level co-occurrence matrix (GLCM), and wavelet transform (DWT). Such features were then integrated into a feature vector and classified using artificial neural network (ANN) and feedforward neural network (FFNN) classifiers. The FFNN and ANN classifiers achieved superior results compared to the other methods. Accuracy rates of 95.24% for diagnosing the ISIC 2018 dataset and 97.91% for diagnosing the PH2 dataset were achieved using the FFNN algorithm. Second, convolutional neural networks (CNNs) (e.g., ResNet-50 and AlexNet models) were applied to diagnose skin diseases using the transfer learning method. It was found that the ResNet-50 model fared better than AlexNet. Accuracy rates of 90% for diagnosing the ISIC 2018 dataset and 95.8% for the PH2 dataset were reached using the ResNet-50 model." @default.
- W4200204081 created "2021-12-31" @default.
- W4200204081 creator A5045864038 @default.
- W4200204081 creator A5053776644 @default.
- W4200204081 date "2021-12-18" @default.
- W4200204081 modified "2023-10-06" @default.
- W4200204081 title "Deep Learning and Machine Learning Techniques of Diagnosis Dermoscopy Images for Early Detection of Skin Diseases" @default.
- W4200204081 cites W2054083814 @default.
- W4200204081 cites W2074366118 @default.
- W4200204081 cites W2099323721 @default.
- W4200204081 cites W2108900923 @default.
- W4200204081 cites W2748902594 @default.
- W4200204081 cites W2789587241 @default.
- W4200204081 cites W2793076225 @default.
- W4200204081 cites W2900465986 @default.
- W4200204081 cites W2908390493 @default.
- W4200204081 cites W2916275175 @default.
- W4200204081 cites W2919115771 @default.
- W4200204081 cites W2946140655 @default.
- W4200204081 cites W2947551377 @default.
- W4200204081 cites W2952969434 @default.
- W4200204081 cites W2963853763 @default.
- W4200204081 cites W2967907195 @default.
- W4200204081 cites W2997733341 @default.
- W4200204081 cites W2999894693 @default.
- W4200204081 cites W3001669684 @default.
- W4200204081 cites W3029477994 @default.
- W4200204081 cites W3036298167 @default.
- W4200204081 cites W3042243143 @default.
- W4200204081 cites W3049224987 @default.
- W4200204081 cites W3049254768 @default.
- W4200204081 cites W3080741050 @default.
- W4200204081 cites W3082380471 @default.
- W4200204081 cites W3082612524 @default.
- W4200204081 cites W3085376891 @default.
- W4200204081 cites W3093524551 @default.
- W4200204081 cites W3114688163 @default.
- W4200204081 cites W3120409733 @default.
- W4200204081 cites W3124608938 @default.
- W4200204081 cites W3131428516 @default.
- W4200204081 cites W3136139906 @default.
- W4200204081 cites W3136200549 @default.
- W4200204081 cites W3140640183 @default.
- W4200204081 cites W3148908072 @default.
- W4200204081 cites W3150038271 @default.
- W4200204081 cites W3156313549 @default.
- W4200204081 cites W3158307528 @default.
- W4200204081 cites W3159690776 @default.
- W4200204081 cites W3162430225 @default.
- W4200204081 cites W3162961310 @default.
- W4200204081 cites W3172921504 @default.
- W4200204081 cites W3206316397 @default.
- W4200204081 cites W3207421495 @default.
- W4200204081 cites W3215630567 @default.
- W4200204081 cites W3216921303 @default.
- W4200204081 cites W3217502178 @default.
- W4200204081 doi "https://doi.org/10.3390/electronics10243158" @default.
- W4200204081 hasPublicationYear "2021" @default.
- W4200204081 type Work @default.
- W4200204081 citedByCount "34" @default.
- W4200204081 countsByYear W42002040812022 @default.
- W4200204081 countsByYear W42002040812023 @default.
- W4200204081 crossrefType "journal-article" @default.
- W4200204081 hasAuthorship W4200204081A5045864038 @default.
- W4200204081 hasAuthorship W4200204081A5053776644 @default.
- W4200204081 hasBestOaLocation W42002040811 @default.
- W4200204081 hasConcept C108583219 @default.
- W4200204081 hasConcept C115961682 @default.
- W4200204081 hasConcept C119857082 @default.
- W4200204081 hasConcept C12267149 @default.
- W4200204081 hasConcept C150899416 @default.
- W4200204081 hasConcept C153180895 @default.
- W4200204081 hasConcept C154945302 @default.
- W4200204081 hasConcept C16005928 @default.
- W4200204081 hasConcept C196216189 @default.
- W4200204081 hasConcept C2988168687 @default.
- W4200204081 hasConcept C41008148 @default.
- W4200204081 hasConcept C46286280 @default.
- W4200204081 hasConcept C47432892 @default.
- W4200204081 hasConcept C50644808 @default.
- W4200204081 hasConcept C53533937 @default.
- W4200204081 hasConcept C71924100 @default.
- W4200204081 hasConcept C81363708 @default.
- W4200204081 hasConcept C87335442 @default.
- W4200204081 hasConceptScore W4200204081C108583219 @default.
- W4200204081 hasConceptScore W4200204081C115961682 @default.
- W4200204081 hasConceptScore W4200204081C119857082 @default.
- W4200204081 hasConceptScore W4200204081C12267149 @default.
- W4200204081 hasConceptScore W4200204081C150899416 @default.
- W4200204081 hasConceptScore W4200204081C153180895 @default.
- W4200204081 hasConceptScore W4200204081C154945302 @default.
- W4200204081 hasConceptScore W4200204081C16005928 @default.
- W4200204081 hasConceptScore W4200204081C196216189 @default.
- W4200204081 hasConceptScore W4200204081C2988168687 @default.
- W4200204081 hasConceptScore W4200204081C41008148 @default.
- W4200204081 hasConceptScore W4200204081C46286280 @default.
- W4200204081 hasConceptScore W4200204081C47432892 @default.
- W4200204081 hasConceptScore W4200204081C50644808 @default.