Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200205849> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4200205849 abstract "Machine learning (ML)-based methods are widely explored to predict the quality of transmission (QoT) of a lightpath, which is expected to reduce optical signal to noise ratio (OSNR) margin reserved for the lightpath and therefore improve the spectrum efficiency of an optical network. However, many studies conducting this prediction are often based on synthetic datasets or datasets obtained from laboratory. As such, these datasets may not be amply representative to cover the entire status space of a real optical network, which is often exposed in harsh environment. There are risks of failure when using these ML-based QoT prediction models. It is necessary to develop a mechanism that can guarantee the reliability of a lightpath service even if the prediction models fail. For this, we propose to take advantage of the conventional network protection techniques that are popularly implemented in an optical network and reuse their protection resources to also protect against such a type of failure. Based on the two representative protection techniques, i.e., 1+1 dedicated path protection and shared backup path protection (SBPP), the performance of the proposed protection mechanism is evaluated by reserving different margins for the working and protection lightpaths. For 1+1 path protection, we find that the proposed mechanism can achieve a zero design-margin (D-margin) for a working lightpath thereby significantly improving network spectrum efficiency, while not scarifying the availability of lightpath services. For SBPP, we find that an optimal D-margin should be identified to balance the spectrum efficiency and service availability, and although not significant, the proposed mechanism can save an up to 0.5-dB D-margin for a working lightpath, while guaranteeing the service availability." @default.
- W4200205849 created "2021-12-31" @default.
- W4200205849 creator A5060814935 @default.
- W4200205849 creator A5070623811 @default.
- W4200205849 creator A5071302837 @default.
- W4200205849 creator A5076870101 @default.
- W4200205849 date "2021-12-09" @default.
- W4200205849 modified "2023-10-15" @default.
- W4200205849 title "Protection against Failure of Machine Learning-based QoT Prediction" @default.
- W4200205849 doi "https://doi.org/10.36227/techrxiv.17097440.v1" @default.
- W4200205849 hasPublicationYear "2021" @default.
- W4200205849 type Work @default.
- W4200205849 citedByCount "0" @default.
- W4200205849 crossrefType "posted-content" @default.
- W4200205849 hasAuthorship W4200205849A5060814935 @default.
- W4200205849 hasAuthorship W4200205849A5070623811 @default.
- W4200205849 hasAuthorship W4200205849A5071302837 @default.
- W4200205849 hasAuthorship W4200205849A5076870101 @default.
- W4200205849 hasBestOaLocation W42002058491 @default.
- W4200205849 hasConcept C119857082 @default.
- W4200205849 hasConcept C121332964 @default.
- W4200205849 hasConcept C127413603 @default.
- W4200205849 hasConcept C160724564 @default.
- W4200205849 hasConcept C163258240 @default.
- W4200205849 hasConcept C194273485 @default.
- W4200205849 hasConcept C200601418 @default.
- W4200205849 hasConcept C2777735758 @default.
- W4200205849 hasConcept C2780945871 @default.
- W4200205849 hasConcept C2781040381 @default.
- W4200205849 hasConcept C31258907 @default.
- W4200205849 hasConcept C41008148 @default.
- W4200205849 hasConcept C43214815 @default.
- W4200205849 hasConcept C49040817 @default.
- W4200205849 hasConcept C5119721 @default.
- W4200205849 hasConcept C555944384 @default.
- W4200205849 hasConcept C62520636 @default.
- W4200205849 hasConcept C6260449 @default.
- W4200205849 hasConcept C761482 @default.
- W4200205849 hasConcept C76155785 @default.
- W4200205849 hasConcept C77088390 @default.
- W4200205849 hasConcept C774472 @default.
- W4200205849 hasConceptScore W4200205849C119857082 @default.
- W4200205849 hasConceptScore W4200205849C121332964 @default.
- W4200205849 hasConceptScore W4200205849C127413603 @default.
- W4200205849 hasConceptScore W4200205849C160724564 @default.
- W4200205849 hasConceptScore W4200205849C163258240 @default.
- W4200205849 hasConceptScore W4200205849C194273485 @default.
- W4200205849 hasConceptScore W4200205849C200601418 @default.
- W4200205849 hasConceptScore W4200205849C2777735758 @default.
- W4200205849 hasConceptScore W4200205849C2780945871 @default.
- W4200205849 hasConceptScore W4200205849C2781040381 @default.
- W4200205849 hasConceptScore W4200205849C31258907 @default.
- W4200205849 hasConceptScore W4200205849C41008148 @default.
- W4200205849 hasConceptScore W4200205849C43214815 @default.
- W4200205849 hasConceptScore W4200205849C49040817 @default.
- W4200205849 hasConceptScore W4200205849C5119721 @default.
- W4200205849 hasConceptScore W4200205849C555944384 @default.
- W4200205849 hasConceptScore W4200205849C62520636 @default.
- W4200205849 hasConceptScore W4200205849C6260449 @default.
- W4200205849 hasConceptScore W4200205849C761482 @default.
- W4200205849 hasConceptScore W4200205849C76155785 @default.
- W4200205849 hasConceptScore W4200205849C77088390 @default.
- W4200205849 hasConceptScore W4200205849C774472 @default.
- W4200205849 hasLocation W42002058491 @default.
- W4200205849 hasLocation W42002058492 @default.
- W4200205849 hasOpenAccess W4200205849 @default.
- W4200205849 hasPrimaryLocation W42002058491 @default.
- W4200205849 hasRelatedWork W1574452305 @default.
- W4200205849 hasRelatedWork W2014669704 @default.
- W4200205849 hasRelatedWork W2043949243 @default.
- W4200205849 hasRelatedWork W2144631242 @default.
- W4200205849 hasRelatedWork W2170510229 @default.
- W4200205849 hasRelatedWork W2376946779 @default.
- W4200205849 hasRelatedWork W2381259567 @default.
- W4200205849 hasRelatedWork W4200205849 @default.
- W4200205849 hasRelatedWork W4200418206 @default.
- W4200205849 hasRelatedWork W912368375 @default.
- W4200205849 isParatext "false" @default.
- W4200205849 isRetracted "false" @default.
- W4200205849 workType "article" @default.