Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200207143> ?p ?o ?g. }
- W4200207143 abstract "The application of machine learning has rapidly evolved in medicine over the past decade. In stroke, commercially available machine learning algorithms have already been incorporated into clinical application for rapid diagnosis. The creation and advancement of deep learning techniques have greatly improved clinical utilization of machine learning tools and new algorithms continue to emerge with improved accuracy in stroke diagnosis and outcome prediction. Although imaging-based feature recognition and segmentation have significantly facilitated rapid stroke diagnosis and triaging, stroke prognostication is dependent on a multitude of patient specific as well as clinical factors and hence accurate outcome prediction remains challenging. Despite its vital role in stroke diagnosis and prognostication, it is important to recognize that machine learning output is only as good as the input data and the appropriateness of algorithm applied to any specific data set. Additionally, many studies on machine learning tend to be limited by small sample size and hence concerted efforts to collate data could improve evaluation of future machine learning tools in stroke. In the present state, machine learning technology serves as a helpful and efficient tool for rapid clinical decision making while oversight from clinical experts is still required to address specific aspects not accounted for in an automated algorithm. This article provides an overview of machine learning technology and a tabulated review of pertinent machine learning studies related to stroke diagnosis and outcome prediction." @default.
- W4200207143 created "2021-12-31" @default.
- W4200207143 creator A5045064612 @default.
- W4200207143 creator A5050809149 @default.
- W4200207143 creator A5080304290 @default.
- W4200207143 date "2021-12-06" @default.
- W4200207143 modified "2023-10-16" @default.
- W4200207143 title "Machine Learning in Action: Stroke Diagnosis and Outcome Prediction" @default.
- W4200207143 cites W1947113872 @default.
- W4200207143 cites W1990814258 @default.
- W4200207143 cites W2030037435 @default.
- W4200207143 cites W2033262236 @default.
- W4200207143 cites W2040333498 @default.
- W4200207143 cites W2048055195 @default.
- W4200207143 cites W2048438306 @default.
- W4200207143 cites W2083540539 @default.
- W4200207143 cites W2086121111 @default.
- W4200207143 cites W2090423666 @default.
- W4200207143 cites W2098281838 @default.
- W4200207143 cites W2117539524 @default.
- W4200207143 cites W2117826647 @default.
- W4200207143 cites W2118893727 @default.
- W4200207143 cites W2119542322 @default.
- W4200207143 cites W2134387356 @default.
- W4200207143 cites W2149490453 @default.
- W4200207143 cites W2159233098 @default.
- W4200207143 cites W2204695549 @default.
- W4200207143 cites W2217077692 @default.
- W4200207143 cites W2300046745 @default.
- W4200207143 cites W2481767376 @default.
- W4200207143 cites W2525984666 @default.
- W4200207143 cites W2527037992 @default.
- W4200207143 cites W2530517483 @default.
- W4200207143 cites W2592792234 @default.
- W4200207143 cites W2626711511 @default.
- W4200207143 cites W2753051611 @default.
- W4200207143 cites W2754967293 @default.
- W4200207143 cites W2760314420 @default.
- W4200207143 cites W2767776410 @default.
- W4200207143 cites W2777652322 @default.
- W4200207143 cites W2781666465 @default.
- W4200207143 cites W2788675884 @default.
- W4200207143 cites W2789894922 @default.
- W4200207143 cites W2791595050 @default.
- W4200207143 cites W2795774310 @default.
- W4200207143 cites W2800452457 @default.
- W4200207143 cites W2808437621 @default.
- W4200207143 cites W2883545264 @default.
- W4200207143 cites W2884173411 @default.
- W4200207143 cites W2886527610 @default.
- W4200207143 cites W2888587013 @default.
- W4200207143 cites W2892584940 @default.
- W4200207143 cites W2893462288 @default.
- W4200207143 cites W2896202491 @default.
- W4200207143 cites W2899722123 @default.
- W4200207143 cites W2899768131 @default.
- W4200207143 cites W2912810649 @default.
- W4200207143 cites W2916323829 @default.
- W4200207143 cites W2919207633 @default.
- W4200207143 cites W2923418412 @default.
- W4200207143 cites W2937404770 @default.
- W4200207143 cites W2943539383 @default.
- W4200207143 cites W2943644689 @default.
- W4200207143 cites W2951903392 @default.
- W4200207143 cites W2965403243 @default.
- W4200207143 cites W2968247392 @default.
- W4200207143 cites W2978628464 @default.
- W4200207143 cites W2979307665 @default.
- W4200207143 cites W2979820188 @default.
- W4200207143 cites W2981647529 @default.
- W4200207143 cites W2981995213 @default.
- W4200207143 cites W2982303713 @default.
- W4200207143 cites W2992545309 @default.
- W4200207143 cites W2999859295 @default.
- W4200207143 cites W3002791056 @default.
- W4200207143 cites W3004022591 @default.
- W4200207143 cites W3008718826 @default.
- W4200207143 cites W3010687358 @default.
- W4200207143 cites W3011124015 @default.
- W4200207143 cites W3013150534 @default.
- W4200207143 cites W3021523605 @default.
- W4200207143 cites W3026723093 @default.
- W4200207143 cites W3046167359 @default.
- W4200207143 cites W3049184091 @default.
- W4200207143 cites W3089691165 @default.
- W4200207143 cites W3090176150 @default.
- W4200207143 cites W3092458565 @default.
- W4200207143 cites W3097429259 @default.
- W4200207143 cites W3100049547 @default.
- W4200207143 cites W3100278850 @default.
- W4200207143 cites W3110052512 @default.
- W4200207143 cites W3116932816 @default.
- W4200207143 cites W3121016157 @default.
- W4200207143 cites W3123208053 @default.
- W4200207143 cites W3128642043 @default.
- W4200207143 cites W3129752663 @default.
- W4200207143 cites W3198350258 @default.
- W4200207143 cites W4241005218 @default.
- W4200207143 cites W4242760118 @default.
- W4200207143 cites W4255683973 @default.