Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200207163> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4200207163 abstract "classification of seizure types plays a crucial role in diagnosis and prognosis of epileptic patients which has not been addressed properly, while most of the works are surrounded by seizure detection only. However, in recent times, few works have been attempted on the classification of seizure types using deep learning (DL). In this work, a novel approach based on DL has been proposed to classify four types of seizures — complex partial seizure, generalized non-specific seizure, simple partial seizure, tonic-clonic seizure, and seizure-free. Certainly, one of the most efficient classes of DL, convolution neural network (CNN) has achieved exemplary success in the field of image recognition. Therefore, CNN has been employed to perform both automatic feature extraction and classification tasks after generating 2D images from 1D electroencephalogram (EEG) signal by employing an efficient technique, called gramian angular summation field. Next, these images fed into CNN to perform binary and multiclass classification tasks. For experimental evaluation, the Temple University Hospital (TUH, v1.5.2) EEG dataset has been taken into consideration. The proposed method has achieved classification accuracy for binary and multiclass — 3, 4, and 5 up to 96.01%, 89.91%, 84.19%, and 84.20% respectively. The results display the potentiality of the proposed method in seizure type classification.Clinical relevance—gramian angular summation field, seizure types, convolution neural network." @default.
- W4200207163 created "2021-12-31" @default.
- W4200207163 creator A5005089337 @default.
- W4200207163 creator A5030663279 @default.
- W4200207163 creator A5080669530 @default.
- W4200207163 date "2021-11-01" @default.
- W4200207163 modified "2023-10-14" @default.
- W4200207163 title "Seizure Type Classification Using EEG Based on Gramian Angular Field Transformation and Deep Learning" @default.
- W4200207163 cites W2345279893 @default.
- W4200207163 cites W2999144125 @default.
- W4200207163 cites W3093478721 @default.
- W4200207163 cites W3111670203 @default.
- W4200207163 cites W3131375430 @default.
- W4200207163 doi "https://doi.org/10.1109/embc46164.2021.9629791" @default.
- W4200207163 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34891955" @default.
- W4200207163 hasPublicationYear "2021" @default.
- W4200207163 type Work @default.
- W4200207163 citedByCount "5" @default.
- W4200207163 countsByYear W42002071632022 @default.
- W4200207163 countsByYear W42002071632023 @default.
- W4200207163 crossrefType "proceedings-article" @default.
- W4200207163 hasAuthorship W4200207163A5005089337 @default.
- W4200207163 hasAuthorship W4200207163A5030663279 @default.
- W4200207163 hasAuthorship W4200207163A5080669530 @default.
- W4200207163 hasConcept C108583219 @default.
- W4200207163 hasConcept C121332964 @default.
- W4200207163 hasConcept C12267149 @default.
- W4200207163 hasConcept C123860398 @default.
- W4200207163 hasConcept C153180895 @default.
- W4200207163 hasConcept C154945302 @default.
- W4200207163 hasConcept C15744967 @default.
- W4200207163 hasConcept C158693339 @default.
- W4200207163 hasConcept C169760540 @default.
- W4200207163 hasConcept C2779334592 @default.
- W4200207163 hasConcept C41008148 @default.
- W4200207163 hasConcept C522805319 @default.
- W4200207163 hasConcept C52622490 @default.
- W4200207163 hasConcept C62520636 @default.
- W4200207163 hasConcept C66905080 @default.
- W4200207163 hasConcept C77246614 @default.
- W4200207163 hasConcept C81363708 @default.
- W4200207163 hasConceptScore W4200207163C108583219 @default.
- W4200207163 hasConceptScore W4200207163C121332964 @default.
- W4200207163 hasConceptScore W4200207163C12267149 @default.
- W4200207163 hasConceptScore W4200207163C123860398 @default.
- W4200207163 hasConceptScore W4200207163C153180895 @default.
- W4200207163 hasConceptScore W4200207163C154945302 @default.
- W4200207163 hasConceptScore W4200207163C15744967 @default.
- W4200207163 hasConceptScore W4200207163C158693339 @default.
- W4200207163 hasConceptScore W4200207163C169760540 @default.
- W4200207163 hasConceptScore W4200207163C2779334592 @default.
- W4200207163 hasConceptScore W4200207163C41008148 @default.
- W4200207163 hasConceptScore W4200207163C522805319 @default.
- W4200207163 hasConceptScore W4200207163C52622490 @default.
- W4200207163 hasConceptScore W4200207163C62520636 @default.
- W4200207163 hasConceptScore W4200207163C66905080 @default.
- W4200207163 hasConceptScore W4200207163C77246614 @default.
- W4200207163 hasConceptScore W4200207163C81363708 @default.
- W4200207163 hasFunder F4320322108 @default.
- W4200207163 hasLocation W42002071631 @default.
- W4200207163 hasLocation W42002071632 @default.
- W4200207163 hasOpenAccess W4200207163 @default.
- W4200207163 hasPrimaryLocation W42002071631 @default.
- W4200207163 hasRelatedWork W1964805666 @default.
- W4200207163 hasRelatedWork W2053746507 @default.
- W4200207163 hasRelatedWork W2279398222 @default.
- W4200207163 hasRelatedWork W2544144554 @default.
- W4200207163 hasRelatedWork W3156786002 @default.
- W4200207163 hasRelatedWork W4299822940 @default.
- W4200207163 hasRelatedWork W4316077036 @default.
- W4200207163 hasRelatedWork W4366492315 @default.
- W4200207163 hasRelatedWork W2296457990 @default.
- W4200207163 hasRelatedWork W2345184372 @default.
- W4200207163 isParatext "false" @default.
- W4200207163 isRetracted "false" @default.
- W4200207163 workType "article" @default.