Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200207993> ?p ?o ?g. }
- W4200207993 abstract "Background: Discriminating between different patterns of diastolic dysfunction in heart failure (HF) is still challenging. We tested the hypothesis that an unsupervised machine learning algorithm would detect heterogeneity in diastolic function and improve risk stratification compared with recommended consensus criteria. Methods: This study included 279 consecutive patients aged 24-97 years old with clinically stable HF referred for echocardiographic assessment, in whom diastolic variables were measured according to the current guidelines. Cluster analysis was undertaken to identify homogeneous groups of patients with similar profiles of the variables. Sequential Cox models were used to compare cluster-based classification with guidelines-based classification for predicting clinical outcomes. The primary endpoint was hospitalization for worsening HF. Results: The analysis identified three clusters with distinct properties of diastolic function that shared similarities with guidelines-based classification. The clusters were associated with brain natriuretic peptide level (p < 0.001), hemoglobin concentration (p = 0.017) and estimated glomerular filtration rate (p = 0.001). During a mean follow-up period of 2.6 ± 2.0 years, 62 patients (22%) experienced the primary endpoint. Cluster-based classification predicted events with a hazard ratio 1.68 (p = 0.019) that was independent from and incremental to the Meta-analysis Global Group in Chronic Heart Failure (MAGGIC) risk score for HF, and from left ventricular end-diastolic volume and global longitudinal strain, whereas guidelines-based classification did not retain its independent prognostic value (hazard ratio = 1.25, p = 0.202). Conclusion: Machine learning can identify patterns of diastolic function that better stratify the risk for decompensation than the current consensus recommendations in HF. Integrating this data-driven phenotyping may help in refining prognostication and optimizing treatment." @default.
- W4200207993 created "2021-12-31" @default.
- W4200207993 creator A5002409926 @default.
- W4200207993 creator A5022112259 @default.
- W4200207993 creator A5027412987 @default.
- W4200207993 creator A5036431805 @default.
- W4200207993 creator A5042537748 @default.
- W4200207993 creator A5046380772 @default.
- W4200207993 creator A5055983723 @default.
- W4200207993 creator A5059473511 @default.
- W4200207993 creator A5067796689 @default.
- W4200207993 date "2021-12-23" @default.
- W4200207993 modified "2023-09-29" @default.
- W4200207993 title "A Phenotyping of Diastolic Function by Machine Learning Improves Prediction of Clinical Outcomes in Heart Failure" @default.
- W4200207993 cites W1976196376 @default.
- W4200207993 cites W1987962125 @default.
- W4200207993 cites W2001984572 @default.
- W4200207993 cites W2010477218 @default.
- W4200207993 cites W2011832962 @default.
- W4200207993 cites W2032943411 @default.
- W4200207993 cites W2033989169 @default.
- W4200207993 cites W2041031177 @default.
- W4200207993 cites W2043577144 @default.
- W4200207993 cites W2115222860 @default.
- W4200207993 cites W2167039019 @default.
- W4200207993 cites W2313186535 @default.
- W4200207993 cites W2409076328 @default.
- W4200207993 cites W2547239027 @default.
- W4200207993 cites W2602132542 @default.
- W4200207993 cites W2606140861 @default.
- W4200207993 cites W2607335081 @default.
- W4200207993 cites W2693784502 @default.
- W4200207993 cites W2765491891 @default.
- W4200207993 cites W2773067288 @default.
- W4200207993 cites W2799497466 @default.
- W4200207993 cites W2801357935 @default.
- W4200207993 cites W2896557062 @default.
- W4200207993 cites W2936013991 @default.
- W4200207993 cites W4242608813 @default.
- W4200207993 doi "https://doi.org/10.3389/fcvm.2021.755109" @default.
- W4200207993 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35004877" @default.
- W4200207993 hasPublicationYear "2021" @default.
- W4200207993 type Work @default.
- W4200207993 citedByCount "5" @default.
- W4200207993 countsByYear W42002079932022 @default.
- W4200207993 countsByYear W42002079932023 @default.
- W4200207993 crossrefType "journal-article" @default.
- W4200207993 hasAuthorship W4200207993A5002409926 @default.
- W4200207993 hasAuthorship W4200207993A5022112259 @default.
- W4200207993 hasAuthorship W4200207993A5027412987 @default.
- W4200207993 hasAuthorship W4200207993A5036431805 @default.
- W4200207993 hasAuthorship W4200207993A5042537748 @default.
- W4200207993 hasAuthorship W4200207993A5046380772 @default.
- W4200207993 hasAuthorship W4200207993A5055983723 @default.
- W4200207993 hasAuthorship W4200207993A5059473511 @default.
- W4200207993 hasAuthorship W4200207993A5067796689 @default.
- W4200207993 hasBestOaLocation W42002079931 @default.
- W4200207993 hasConcept C126322002 @default.
- W4200207993 hasConcept C164705383 @default.
- W4200207993 hasConcept C203092338 @default.
- W4200207993 hasConcept C207103383 @default.
- W4200207993 hasConcept C2775915353 @default.
- W4200207993 hasConcept C2778198053 @default.
- W4200207993 hasConcept C2778721985 @default.
- W4200207993 hasConcept C44249647 @default.
- W4200207993 hasConcept C50382708 @default.
- W4200207993 hasConcept C535046627 @default.
- W4200207993 hasConcept C57900726 @default.
- W4200207993 hasConcept C71924100 @default.
- W4200207993 hasConcept C84393581 @default.
- W4200207993 hasConceptScore W4200207993C126322002 @default.
- W4200207993 hasConceptScore W4200207993C164705383 @default.
- W4200207993 hasConceptScore W4200207993C203092338 @default.
- W4200207993 hasConceptScore W4200207993C207103383 @default.
- W4200207993 hasConceptScore W4200207993C2775915353 @default.
- W4200207993 hasConceptScore W4200207993C2778198053 @default.
- W4200207993 hasConceptScore W4200207993C2778721985 @default.
- W4200207993 hasConceptScore W4200207993C44249647 @default.
- W4200207993 hasConceptScore W4200207993C50382708 @default.
- W4200207993 hasConceptScore W4200207993C535046627 @default.
- W4200207993 hasConceptScore W4200207993C57900726 @default.
- W4200207993 hasConceptScore W4200207993C71924100 @default.
- W4200207993 hasConceptScore W4200207993C84393581 @default.
- W4200207993 hasLocation W42002079931 @default.
- W4200207993 hasLocation W42002079932 @default.
- W4200207993 hasLocation W42002079933 @default.
- W4200207993 hasLocation W42002079934 @default.
- W4200207993 hasOpenAccess W4200207993 @default.
- W4200207993 hasPrimaryLocation W42002079931 @default.
- W4200207993 hasRelatedWork W2006299740 @default.
- W4200207993 hasRelatedWork W2089426247 @default.
- W4200207993 hasRelatedWork W2125804349 @default.
- W4200207993 hasRelatedWork W2157072716 @default.
- W4200207993 hasRelatedWork W2162416337 @default.
- W4200207993 hasRelatedWork W2189600054 @default.
- W4200207993 hasRelatedWork W2355594703 @default.
- W4200207993 hasRelatedWork W2393662490 @default.
- W4200207993 hasRelatedWork W2779222010 @default.
- W4200207993 hasRelatedWork W3002915630 @default.
- W4200207993 hasVolume "8" @default.