Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200210772> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4200210772 endingPage "157" @default.
- W4200210772 startingPage "149" @default.
- W4200210772 abstract "Currently adoption of mobile phones and mobile applications based on Android operating system is increasing rapidly. Many companies and emerging startups are carrying out digital transformation by using mobile applications to provide disruptive digital services to replace existing old styled services. This transformation prompted the attackers to create malicious software (malware) using sophisticate methods to target victims of Android mobile phone users. The purpose of this study is to identify Android APK files by classifying them using Artificial Neural Network (ANN) and Non Neural Network (NNN). The ANN is Multi-Layer Perceptron Classifier (MLPC), while the NNN are KNN, SVM, Decision Tree, Logistic Regression and Naïve Bayes methods. The results show that the performance using NNN has decreasing accuracy when training using larger datasets. The use of the K-Nearest Neighbor algorithm with a dataset of 600 APKs achieves an accuracy of 91.2% and dataset of 14170 APKs achieves an accuracy of 88%. The using of the Support Vector Machine algorithm with the 600 APK dataset has an accuracy of 99.1% and the 14170 APK dataset has an accuracy of 90.5%. The using of the Decision Tree algorithm with the 600 APK dataset has an accuracy of 99.2%, the 14170 APK dataset has an accuracy of 90.8%. The experiment using the Multi-Layer Perceptron Classifier has increasing with the 600 APK dataset reaching 99%, the 7000 APK dataset reaching 100% and the 14170 APK dataset reaching 100%." @default.
- W4200210772 created "2021-12-31" @default.
- W4200210772 creator A5001305530 @default.
- W4200210772 creator A5084976586 @default.
- W4200210772 date "2021-12-28" @default.
- W4200210772 modified "2023-09-27" @default.
- W4200210772 title "Android APK Identification using Non Neural Network and Neural Network Classifier" @default.
- W4200210772 doi "https://doi.org/10.29303/jcosine.v5i2.420" @default.
- W4200210772 hasPublicationYear "2021" @default.
- W4200210772 type Work @default.
- W4200210772 citedByCount "0" @default.
- W4200210772 crossrefType "journal-article" @default.
- W4200210772 hasAuthorship W4200210772A5001305530 @default.
- W4200210772 hasAuthorship W4200210772A5084976586 @default.
- W4200210772 hasBestOaLocation W42002107721 @default.
- W4200210772 hasConcept C111919701 @default.
- W4200210772 hasConcept C119857082 @default.
- W4200210772 hasConcept C12267149 @default.
- W4200210772 hasConcept C124101348 @default.
- W4200210772 hasConcept C154945302 @default.
- W4200210772 hasConcept C179717631 @default.
- W4200210772 hasConcept C41008148 @default.
- W4200210772 hasConcept C50644808 @default.
- W4200210772 hasConcept C52001869 @default.
- W4200210772 hasConcept C557433098 @default.
- W4200210772 hasConcept C60908668 @default.
- W4200210772 hasConcept C84525736 @default.
- W4200210772 hasConcept C95623464 @default.
- W4200210772 hasConceptScore W4200210772C111919701 @default.
- W4200210772 hasConceptScore W4200210772C119857082 @default.
- W4200210772 hasConceptScore W4200210772C12267149 @default.
- W4200210772 hasConceptScore W4200210772C124101348 @default.
- W4200210772 hasConceptScore W4200210772C154945302 @default.
- W4200210772 hasConceptScore W4200210772C179717631 @default.
- W4200210772 hasConceptScore W4200210772C41008148 @default.
- W4200210772 hasConceptScore W4200210772C50644808 @default.
- W4200210772 hasConceptScore W4200210772C52001869 @default.
- W4200210772 hasConceptScore W4200210772C557433098 @default.
- W4200210772 hasConceptScore W4200210772C60908668 @default.
- W4200210772 hasConceptScore W4200210772C84525736 @default.
- W4200210772 hasConceptScore W4200210772C95623464 @default.
- W4200210772 hasIssue "2" @default.
- W4200210772 hasLocation W42002107721 @default.
- W4200210772 hasOpenAccess W4200210772 @default.
- W4200210772 hasPrimaryLocation W42002107721 @default.
- W4200210772 hasRelatedWork W2750664433 @default.
- W4200210772 hasRelatedWork W2979979539 @default.
- W4200210772 hasRelatedWork W3156401890 @default.
- W4200210772 hasRelatedWork W3168994312 @default.
- W4200210772 hasRelatedWork W3185179407 @default.
- W4200210772 hasRelatedWork W4200196661 @default.
- W4200210772 hasRelatedWork W4249229055 @default.
- W4200210772 hasRelatedWork W4294067781 @default.
- W4200210772 hasRelatedWork W4316082230 @default.
- W4200210772 hasRelatedWork W4361795583 @default.
- W4200210772 hasVolume "5" @default.
- W4200210772 isParatext "false" @default.
- W4200210772 isRetracted "false" @default.
- W4200210772 workType "article" @default.