Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200212986> ?p ?o ?g. }
- W4200212986 endingPage "2530" @default.
- W4200212986 startingPage "2520" @default.
- W4200212986 abstract "The realization of accurate extreme wave height occurrence prediction is essential for offshore and onshore structures. In this paper, a new hybrid Natural Outlier Factor-Extreme Learning Machine (NOF-ELM) method is proposed to predict the extreme wave height occurrence based on the meteorological data. Four major hurricanes in the Gulf of Mexico are used to evaluate the performance of the proposed model. Moreover, the effect of metrological parameters on the occurrence of extreme wave height is investigated. The results of the ELM classifier are then compared with traditional classification techniques, including Logistic Regression, C4.5 Decision Trees, Discriminant Analysis, k-Nearest Neighbours, classic Multi-Layer Perceptron neural networks, and Support Vector Machines. The results show that the proposed method performs well in extreme wave height detection based on metrological parameters by mean accuracy higher than 99%. Furthermore, the results indicate that radial basis ELM has the best performance in extreme wave detection." @default.
- W4200212986 created "2021-12-31" @default.
- W4200212986 creator A5015291242 @default.
- W4200212986 creator A5029460343 @default.
- W4200212986 date "2021-12-28" @default.
- W4200212986 modified "2023-10-16" @default.
- W4200212986 title "Extreme wave height detection based on the meteorological data, using hybrid NOF-ELM method" @default.
- W4200212986 cites W1121718188 @default.
- W4200212986 cites W126297923 @default.
- W4200212986 cites W2026131661 @default.
- W4200212986 cites W2052967164 @default.
- W4200212986 cites W2054510533 @default.
- W4200212986 cites W2065111490 @default.
- W4200212986 cites W2090312876 @default.
- W4200212986 cites W2144182447 @default.
- W4200212986 cites W2154229304 @default.
- W4200212986 cites W2154568261 @default.
- W4200212986 cites W2197830862 @default.
- W4200212986 cites W2346649542 @default.
- W4200212986 cites W2528898682 @default.
- W4200212986 cites W2586130591 @default.
- W4200212986 cites W2600884488 @default.
- W4200212986 cites W2602559978 @default.
- W4200212986 cites W2801330571 @default.
- W4200212986 cites W2802086687 @default.
- W4200212986 cites W2809203029 @default.
- W4200212986 cites W2861326824 @default.
- W4200212986 cites W2895196240 @default.
- W4200212986 cites W2909679734 @default.
- W4200212986 cites W2940624827 @default.
- W4200212986 cites W2969925897 @default.
- W4200212986 cites W2970446002 @default.
- W4200212986 cites W2974806161 @default.
- W4200212986 cites W2979391089 @default.
- W4200212986 cites W2987225788 @default.
- W4200212986 cites W2998594188 @default.
- W4200212986 cites W3016781963 @default.
- W4200212986 cites W3037816806 @default.
- W4200212986 cites W3080500267 @default.
- W4200212986 cites W3085477867 @default.
- W4200212986 cites W3111789499 @default.
- W4200212986 cites W3112792461 @default.
- W4200212986 cites W3113015612 @default.
- W4200212986 cites W3118568002 @default.
- W4200212986 cites W4293417080 @default.
- W4200212986 doi "https://doi.org/10.1080/17445302.2021.2005357" @default.
- W4200212986 hasPublicationYear "2021" @default.
- W4200212986 type Work @default.
- W4200212986 citedByCount "2" @default.
- W4200212986 countsByYear W42002129862022 @default.
- W4200212986 countsByYear W42002129862023 @default.
- W4200212986 crossrefType "journal-article" @default.
- W4200212986 hasAuthorship W4200212986A5015291242 @default.
- W4200212986 hasAuthorship W4200212986A5029460343 @default.
- W4200212986 hasConcept C111368507 @default.
- W4200212986 hasConcept C12267149 @default.
- W4200212986 hasConcept C124101348 @default.
- W4200212986 hasConcept C127313418 @default.
- W4200212986 hasConcept C153180895 @default.
- W4200212986 hasConcept C153294291 @default.
- W4200212986 hasConcept C154945302 @default.
- W4200212986 hasConcept C165082838 @default.
- W4200212986 hasConcept C205649164 @default.
- W4200212986 hasConcept C2780150128 @default.
- W4200212986 hasConcept C41008148 @default.
- W4200212986 hasConcept C50644808 @default.
- W4200212986 hasConcept C60908668 @default.
- W4200212986 hasConcept C79337645 @default.
- W4200212986 hasConcept C85910571 @default.
- W4200212986 hasConceptScore W4200212986C111368507 @default.
- W4200212986 hasConceptScore W4200212986C12267149 @default.
- W4200212986 hasConceptScore W4200212986C124101348 @default.
- W4200212986 hasConceptScore W4200212986C127313418 @default.
- W4200212986 hasConceptScore W4200212986C153180895 @default.
- W4200212986 hasConceptScore W4200212986C153294291 @default.
- W4200212986 hasConceptScore W4200212986C154945302 @default.
- W4200212986 hasConceptScore W4200212986C165082838 @default.
- W4200212986 hasConceptScore W4200212986C205649164 @default.
- W4200212986 hasConceptScore W4200212986C2780150128 @default.
- W4200212986 hasConceptScore W4200212986C41008148 @default.
- W4200212986 hasConceptScore W4200212986C50644808 @default.
- W4200212986 hasConceptScore W4200212986C60908668 @default.
- W4200212986 hasConceptScore W4200212986C79337645 @default.
- W4200212986 hasConceptScore W4200212986C85910571 @default.
- W4200212986 hasIssue "11" @default.
- W4200212986 hasLocation W42002129861 @default.
- W4200212986 hasOpenAccess W4200212986 @default.
- W4200212986 hasPrimaryLocation W42002129861 @default.
- W4200212986 hasRelatedWork W2099369243 @default.
- W4200212986 hasRelatedWork W2120008580 @default.
- W4200212986 hasRelatedWork W2136184105 @default.
- W4200212986 hasRelatedWork W2791871403 @default.
- W4200212986 hasRelatedWork W2902466377 @default.
- W4200212986 hasRelatedWork W3193301557 @default.
- W4200212986 hasRelatedWork W4223656335 @default.
- W4200212986 hasRelatedWork W4362499384 @default.
- W4200212986 hasRelatedWork W2187500075 @default.
- W4200212986 hasRelatedWork W2345184372 @default.