Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200213187> ?p ?o ?g. }
- W4200213187 endingPage "e832" @default.
- W4200213187 startingPage "e832" @default.
- W4200213187 abstract "High dimensionality and class imbalance have been largely recognized as important issues in machine learning. A vast amount of literature has indeed investigated suitable approaches to address the multiple challenges that arise when dealing with high-dimensional feature spaces (where each problem instance is described by a large number of features). As well, several learning strategies have been devised to cope with the adverse effects of imbalanced class distributions, which may severely impact on the generalization ability of the induced models. Nevertheless, although both the issues have been largely studied for several years, they have mostly been addressed separately, and their combined effects are yet to be fully understood. Indeed, little research has been so far conducted to investigate which approaches might be best suited to deal with datasets that are, at the same time, high-dimensional and class-imbalanced. To make a contribution in this direction, our work presents a comparative study among different learning strategies that leverage both feature selection, to cope with high dimensionality, as well as cost-sensitive learning methods, to cope with class imbalance. Specifically, different ways of incorporating misclassification costs into the learning process have been explored. Also different feature selection heuristics have been considered, both univariate and multivariate, to comparatively evaluate their effectiveness on imbalanced data. The experiments have been conducted on three challenging benchmarks from the genomic domain, gaining interesting insight into the beneficial impact of combining feature selection and cost-sensitive learning, especially in the presence of highly skewed data distributions." @default.
- W4200213187 created "2021-12-31" @default.
- W4200213187 creator A5004152189 @default.
- W4200213187 creator A5052023262 @default.
- W4200213187 date "2021-12-24" @default.
- W4200213187 modified "2023-10-16" @default.
- W4200213187 title "Cost-sensitive learning strategies for high-dimensional and imbalanced data: a comparative study" @default.
- W4200213187 cites W1938500889 @default.
- W4200213187 cites W1963630472 @default.
- W4200213187 cites W1975664724 @default.
- W4200213187 cites W1991181258 @default.
- W4200213187 cites W1995806857 @default.
- W4200213187 cites W2023450550 @default.
- W4200213187 cites W2064208261 @default.
- W4200213187 cites W2088059023 @default.
- W4200213187 cites W2091374137 @default.
- W4200213187 cites W2099454382 @default.
- W4200213187 cites W2109676405 @default.
- W4200213187 cites W2109826612 @default.
- W4200213187 cites W2118978333 @default.
- W4200213187 cites W2119387367 @default.
- W4200213187 cites W2131391419 @default.
- W4200213187 cites W2138776277 @default.
- W4200213187 cites W2139758155 @default.
- W4200213187 cites W2143426320 @default.
- W4200213187 cites W2154706222 @default.
- W4200213187 cites W2164330572 @default.
- W4200213187 cites W2338318698 @default.
- W4200213187 cites W2490420619 @default.
- W4200213187 cites W2540352327 @default.
- W4200213187 cites W2561862420 @default.
- W4200213187 cites W2562319768 @default.
- W4200213187 cites W2771139966 @default.
- W4200213187 cites W2771169143 @default.
- W4200213187 cites W2800788706 @default.
- W4200213187 cites W2889487566 @default.
- W4200213187 cites W2902903018 @default.
- W4200213187 cites W2911964244 @default.
- W4200213187 cites W2918408501 @default.
- W4200213187 cites W2948009788 @default.
- W4200213187 cites W2949607402 @default.
- W4200213187 cites W2964278775 @default.
- W4200213187 cites W2970487695 @default.
- W4200213187 cites W2973941913 @default.
- W4200213187 cites W3000453568 @default.
- W4200213187 cites W3013063100 @default.
- W4200213187 cites W3017206470 @default.
- W4200213187 cites W3100840294 @default.
- W4200213187 cites W3107734136 @default.
- W4200213187 cites W3172444956 @default.
- W4200213187 cites W3173838947 @default.
- W4200213187 cites W3183852519 @default.
- W4200213187 cites W3184428116 @default.
- W4200213187 cites W323404752 @default.
- W4200213187 cites W4243367342 @default.
- W4200213187 cites W4289236186 @default.
- W4200213187 cites W619160221 @default.
- W4200213187 cites W873782400 @default.
- W4200213187 doi "https://doi.org/10.7717/peerj-cs.832" @default.
- W4200213187 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35036539" @default.
- W4200213187 hasPublicationYear "2021" @default.
- W4200213187 type Work @default.
- W4200213187 citedByCount "6" @default.
- W4200213187 countsByYear W42002131872022 @default.
- W4200213187 countsByYear W42002131872023 @default.
- W4200213187 crossrefType "journal-article" @default.
- W4200213187 hasAuthorship W4200213187A5004152189 @default.
- W4200213187 hasAuthorship W4200213187A5052023262 @default.
- W4200213187 hasBestOaLocation W42002131871 @default.
- W4200213187 hasConcept C111030470 @default.
- W4200213187 hasConcept C111919701 @default.
- W4200213187 hasConcept C119857082 @default.
- W4200213187 hasConcept C127705205 @default.
- W4200213187 hasConcept C138885662 @default.
- W4200213187 hasConcept C148483581 @default.
- W4200213187 hasConcept C153083717 @default.
- W4200213187 hasConcept C154945302 @default.
- W4200213187 hasConcept C161584116 @default.
- W4200213187 hasConcept C199163554 @default.
- W4200213187 hasConcept C2522767166 @default.
- W4200213187 hasConcept C2776401178 @default.
- W4200213187 hasConcept C2777212361 @default.
- W4200213187 hasConcept C41008148 @default.
- W4200213187 hasConcept C41895202 @default.
- W4200213187 hasConceptScore W4200213187C111030470 @default.
- W4200213187 hasConceptScore W4200213187C111919701 @default.
- W4200213187 hasConceptScore W4200213187C119857082 @default.
- W4200213187 hasConceptScore W4200213187C127705205 @default.
- W4200213187 hasConceptScore W4200213187C138885662 @default.
- W4200213187 hasConceptScore W4200213187C148483581 @default.
- W4200213187 hasConceptScore W4200213187C153083717 @default.
- W4200213187 hasConceptScore W4200213187C154945302 @default.
- W4200213187 hasConceptScore W4200213187C161584116 @default.
- W4200213187 hasConceptScore W4200213187C199163554 @default.
- W4200213187 hasConceptScore W4200213187C2522767166 @default.
- W4200213187 hasConceptScore W4200213187C2776401178 @default.
- W4200213187 hasConceptScore W4200213187C2777212361 @default.
- W4200213187 hasConceptScore W4200213187C41008148 @default.