Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200213295> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4200213295 endingPage "100042" @default.
- W4200213295 startingPage "100042" @default.
- W4200213295 abstract "The tech sector has been growing at a rapid speed, demanding a higher level of expertise from its labor force. New skills and programming languages are introduced and required by the industry every day, while the university courses are not updated adequately. Finding the high-demand skills and relevant courses to study has become essential to both students and faculty members at tech universities, which leads to a growing research interest in building an intelligence system to support decision making. Leveraging recent development in Natural Language Processing, we built an NLP-based course recommendation system specifically for the computer science (CS) and information technology (IT) fields. In particular, we built (1) a Named Entity Recognition (CSIT-NER) model to extract tech-related skills and entities, then used these skills to build (2) a personalized multi-level course recommendation system using a hybrid model (hybrid CSIT-CRS). Our CSIT-NER model, trained and fine-tuned on a large corpus of text extracted from StackOverflow and GitHub, can accurately extract the relevant skills and entities, outperforming state-of-the-art models across all evaluation metrics. Our hybrid CSIT-CRS can provide recommendations on multiple individualized levels of university courses, career paths with job listings, and industry-required with suitable online courses. The whole system received good ratings and feedback from users from our survey with 201 volunteers who are students and faculty members of tech universities in Australia and Vietnam. This research is beneficial to students, faculty members, universities in CS/IT higher education sector, and stakeholders in tech-related industries." @default.
- W4200213295 created "2021-12-31" @default.
- W4200213295 creator A5007493301 @default.
- W4200213295 creator A5051512158 @default.
- W4200213295 creator A5057975177 @default.
- W4200213295 creator A5060839285 @default.
- W4200213295 creator A5077936199 @default.
- W4200213295 creator A5078004386 @default.
- W4200213295 date "2022-01-01" @default.
- W4200213295 modified "2023-09-25" @default.
- W4200213295 title "Domain-specific NLP system to support learning path and curriculum design at tech universities" @default.
- W4200213295 cites W2041282815 @default.
- W4200213295 cites W2168745915 @default.
- W4200213295 cites W2318802957 @default.
- W4200213295 cites W2594625992 @default.
- W4200213295 cites W2799657611 @default.
- W4200213295 cites W2807800730 @default.
- W4200213295 cites W2903431110 @default.
- W4200213295 cites W2905634033 @default.
- W4200213295 cites W2969632629 @default.
- W4200213295 cites W2981308189 @default.
- W4200213295 cites W3011940529 @default.
- W4200213295 cites W3035063214 @default.
- W4200213295 cites W3094176136 @default.
- W4200213295 cites W4241727697 @default.
- W4200213295 doi "https://doi.org/10.1016/j.caeai.2021.100042" @default.
- W4200213295 hasPublicationYear "2022" @default.
- W4200213295 type Work @default.
- W4200213295 citedByCount "5" @default.
- W4200213295 countsByYear W42002132952022 @default.
- W4200213295 countsByYear W42002132952023 @default.
- W4200213295 crossrefType "journal-article" @default.
- W4200213295 hasAuthorship W4200213295A5007493301 @default.
- W4200213295 hasAuthorship W4200213295A5051512158 @default.
- W4200213295 hasAuthorship W4200213295A5057975177 @default.
- W4200213295 hasAuthorship W4200213295A5060839285 @default.
- W4200213295 hasAuthorship W4200213295A5077936199 @default.
- W4200213295 hasAuthorship W4200213295A5078004386 @default.
- W4200213295 hasBestOaLocation W42002132951 @default.
- W4200213295 hasConcept C134306372 @default.
- W4200213295 hasConcept C154945302 @default.
- W4200213295 hasConcept C15744967 @default.
- W4200213295 hasConcept C19417346 @default.
- W4200213295 hasConcept C199360897 @default.
- W4200213295 hasConcept C2777735758 @default.
- W4200213295 hasConcept C33923547 @default.
- W4200213295 hasConcept C36503486 @default.
- W4200213295 hasConcept C41008148 @default.
- W4200213295 hasConcept C47177190 @default.
- W4200213295 hasConcept C56739046 @default.
- W4200213295 hasConceptScore W4200213295C134306372 @default.
- W4200213295 hasConceptScore W4200213295C154945302 @default.
- W4200213295 hasConceptScore W4200213295C15744967 @default.
- W4200213295 hasConceptScore W4200213295C19417346 @default.
- W4200213295 hasConceptScore W4200213295C199360897 @default.
- W4200213295 hasConceptScore W4200213295C2777735758 @default.
- W4200213295 hasConceptScore W4200213295C33923547 @default.
- W4200213295 hasConceptScore W4200213295C36503486 @default.
- W4200213295 hasConceptScore W4200213295C41008148 @default.
- W4200213295 hasConceptScore W4200213295C47177190 @default.
- W4200213295 hasConceptScore W4200213295C56739046 @default.
- W4200213295 hasFunder F4320320972 @default.
- W4200213295 hasLocation W42002132951 @default.
- W4200213295 hasLocation W42002132952 @default.
- W4200213295 hasOpenAccess W4200213295 @default.
- W4200213295 hasPrimaryLocation W42002132951 @default.
- W4200213295 hasRelatedWork W1986684738 @default.
- W4200213295 hasRelatedWork W1991466308 @default.
- W4200213295 hasRelatedWork W2023505575 @default.
- W4200213295 hasRelatedWork W2362192218 @default.
- W4200213295 hasRelatedWork W2371125232 @default.
- W4200213295 hasRelatedWork W2373437113 @default.
- W4200213295 hasRelatedWork W2623347760 @default.
- W4200213295 hasRelatedWork W2743342830 @default.
- W4200213295 hasRelatedWork W2899084033 @default.
- W4200213295 hasRelatedWork W3034138874 @default.
- W4200213295 hasVolume "3" @default.
- W4200213295 isParatext "false" @default.
- W4200213295 isRetracted "false" @default.
- W4200213295 workType "article" @default.